Loading…

3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)

In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen poi...

Full description

Saved in:
Bibliographic Details
Published in:Solid earth (Göttingen) 2014-11, Vol.5 (2), p.1123-1149
Main Authors: Reiter, K, Heidbach, O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3
cites cdi_FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3
container_end_page 1149
container_issue 2
container_start_page 1123
container_title Solid earth (Göttingen)
container_volume 5
creator Reiter, K
Heidbach, O
description In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical–numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 Shmin and 2 (+11) SHmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.
doi_str_mv 10.5194/se-5-1123-2014
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bebae39a285d4d6ab21bf393fc23841e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481441748</galeid><doaj_id>oai_doaj_org_article_bebae39a285d4d6ab21bf393fc23841e</doaj_id><sourcerecordid>A481441748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEElXplXMkLu0hxeOPjX1cFgorVULi42xNnMk2qyRebEcqN_4D_7C_BGeLKopqH2b06pnXHzNF8RrYpQIj30aqVAXARcUZyGfFCeiVqYzi5vk_-cviLMY9y2tV81qJk2IvqvfljvxI7gan3uFw9-v3NI8UlrwcfUtD6bsy3VDp_JRoPPiA4WfpwhxTJmIKFGMOmKjspyO4HhoKCct3GLNyvsEJW7x4VbzocIh09jeeFt-vPnzbfKquP3_cbtbXlVOsTpVpGmolKdfUHdOMuAQkI7U0oJ1j2DWNkNxIEJ3ToEEYINZqAUw4rVYoTovtvW_rcW8PoR_zfa3H3h4FH3YWQ-rdQLahBkkY5Fq1sl1hw6HphMnOXGgJlL3O770Owf-YKSY79tHRMOBEfo4WNGNSGKZ4Rt_8h-79HKb8Ugu1qhnndUYfqB3m8_up8ymgW0ztWmqQEmqpM3X5BJV3S2Of20Bdn_VHBRePCo6tuk07nGO0269fnjR3wccYqHv4I2B2GSYbySq7DJNdhkn8AT9Eue0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757022704</pqid></control><display><type>article</type><title>3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)</title><source>Publicly Available Content Database</source><creator>Reiter, K ; Heidbach, O</creator><creatorcontrib>Reiter, K ; Heidbach, O</creatorcontrib><description>In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical–numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 Shmin and 2 (+11) SHmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.</description><identifier>ISSN: 1869-9529</identifier><identifier>ISSN: 1869-9510</identifier><identifier>EISSN: 1869-9529</identifier><identifier>DOI: 10.5194/se-5-1123-2014</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Alberta ; Analysis ; Basins ; Calibration ; Crust (Geology) ; Earth science ; Geomechanics ; Geothermal energy ; Orientation ; Stresses ; Three dimensional models</subject><ispartof>Solid earth (Göttingen), 2014-11, Vol.5 (2), p.1123-1149</ispartof><rights>COPYRIGHT 2014 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3</citedby><cites>FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3</cites><orcidid>0000-0003-4232-7426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1757022704/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1757022704?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Reiter, K</creatorcontrib><creatorcontrib>Heidbach, O</creatorcontrib><title>3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)</title><title>Solid earth (Göttingen)</title><description>In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical–numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 Shmin and 2 (+11) SHmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.</description><subject>Alberta</subject><subject>Analysis</subject><subject>Basins</subject><subject>Calibration</subject><subject>Crust (Geology)</subject><subject>Earth science</subject><subject>Geomechanics</subject><subject>Geothermal energy</subject><subject>Orientation</subject><subject>Stresses</subject><subject>Three dimensional models</subject><issn>1869-9529</issn><issn>1869-9510</issn><issn>1869-9529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEElXplXMkLu0hxeOPjX1cFgorVULi42xNnMk2qyRebEcqN_4D_7C_BGeLKopqH2b06pnXHzNF8RrYpQIj30aqVAXARcUZyGfFCeiVqYzi5vk_-cviLMY9y2tV81qJk2IvqvfljvxI7gan3uFw9-v3NI8UlrwcfUtD6bsy3VDp_JRoPPiA4WfpwhxTJmIKFGMOmKjspyO4HhoKCct3GLNyvsEJW7x4VbzocIh09jeeFt-vPnzbfKquP3_cbtbXlVOsTpVpGmolKdfUHdOMuAQkI7U0oJ1j2DWNkNxIEJ3ToEEYINZqAUw4rVYoTovtvW_rcW8PoR_zfa3H3h4FH3YWQ-rdQLahBkkY5Fq1sl1hw6HphMnOXGgJlL3O770Owf-YKSY79tHRMOBEfo4WNGNSGKZ4Rt_8h-79HKb8Ugu1qhnndUYfqB3m8_up8ymgW0ztWmqQEmqpM3X5BJV3S2Of20Bdn_VHBRePCo6tuk07nGO0269fnjR3wccYqHv4I2B2GSYbySq7DJNdhkn8AT9Eue0</recordid><startdate>20141125</startdate><enddate>20141125</enddate><creator>Reiter, K</creator><creator>Heidbach, O</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4232-7426</orcidid></search><sort><creationdate>20141125</creationdate><title>3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)</title><author>Reiter, K ; Heidbach, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alberta</topic><topic>Analysis</topic><topic>Basins</topic><topic>Calibration</topic><topic>Crust (Geology)</topic><topic>Earth science</topic><topic>Geomechanics</topic><topic>Geothermal energy</topic><topic>Orientation</topic><topic>Stresses</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiter, K</creatorcontrib><creatorcontrib>Heidbach, O</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Solid earth (Göttingen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiter, K</au><au>Heidbach, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)</atitle><jtitle>Solid earth (Göttingen)</jtitle><date>2014-11-25</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>1123</spage><epage>1149</epage><pages>1123-1149</pages><issn>1869-9529</issn><issn>1869-9510</issn><eissn>1869-9529</eissn><abstract>In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical–numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 Shmin and 2 (+11) SHmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/se-5-1123-2014</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4232-7426</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-9529
ispartof Solid earth (Göttingen), 2014-11, Vol.5 (2), p.1123-1149
issn 1869-9529
1869-9510
1869-9529
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bebae39a285d4d6ab21bf393fc23841e
source Publicly Available Content Database
subjects Alberta
Analysis
Basins
Calibration
Crust (Geology)
Earth science
Geomechanics
Geothermal energy
Orientation
Stresses
Three dimensional models
title 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20geomechanical%E2%80%93numerical%20model%20of%20the%20contemporary%20crustal%20stress%20state%20in%20the%20Alberta%20Basin%20(Canada)&rft.jtitle=Solid%20earth%20(G%C3%B6ttingen)&rft.au=Reiter,%20K&rft.date=2014-11-25&rft.volume=5&rft.issue=2&rft.spage=1123&rft.epage=1149&rft.pages=1123-1149&rft.issn=1869-9529&rft.eissn=1869-9529&rft_id=info:doi/10.5194/se-5-1123-2014&rft_dat=%3Cgale_doaj_%3EA481441748%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-9bbed4e5cb7f080e241ae9484918cc0afbb3429413fc8181391e0d83103c856a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757022704&rft_id=info:pmid/&rft_galeid=A481441748&rfr_iscdi=true