Loading…

Ex Vivo Human Histology Fractional Treatment with a New CO2 Scanner: A Potential Application on Deep Scarring

Background and Objectives: For many years, fully ablative laser treatments, particularly those performed with a carbon dioxide (CO2) laser, were regarded as the gold standard for resurfacing. This study’s goal is to assess the depth that can be reached by a new CO2 scanner system, through a skin mod...

Full description

Saved in:
Bibliographic Details
Published in:Medicina (Kaunas, Lithuania) Lithuania), 2023-06, Vol.59 (6), p.1117
Main Authors: Bonan, Paolo, Pieri, Laura, Fusco, Irene, Madeddu, Francesca, Zingoni, Tiziano, Conforti, Claudio, Piccolo, Domenico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and Objectives: For many years, fully ablative laser treatments, particularly those performed with a carbon dioxide (CO2) laser, were regarded as the gold standard for resurfacing. This study’s goal is to assess the depth that can be reached by a new CO2 scanner system, through a skin model with greater dermal thickness, to use in the treatment of deep scarring. Materials and Methods: Male human skin tissue was laser-treated using a CO2 fractional laser and a new scanning system, and all samples were fixed in 10% neutral buffered formalin, dehydrated using a series of crescent alcohol, embedded in paraffin, sectioned in series (4–5 µm thick), stained with haematoxylin and eosin (H&E), and then analysed under an optical microscope. Results: From the epidermis through the underlying papillary and reticular dermis to various depths of the dermis, microablation columns of damage and coagulated microcolumns of collagen were observed. The reticular dermis was fully penetrated up to 6 mm at higher energy levels (210 mJ/DOT), resulting in deeper tissue injury. Although the laser might penetrate further, the skin stops there, leaving just the fat and muscular tissue. Conclusions: The deep layers of the dermis can be penetrated by the CO2 laser system throughout the entire dermal thickness when using the new scanning system, suggesting that this laser’s potential impact, at the selected settings, covers all skin targets required to perform superficial or deep treatments on any dermatological issue. Finally, patients who have problems, such as morbid scar-deep complications, which affect their quality of life, are more likely to profit from this innovative technique.
ISSN:1648-9144
1010-660X
1648-9144
DOI:10.3390/medicina59061117