Loading…

Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp

The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential rela...

Full description

Saved in:
Bibliographic Details
Published in:Archives of metallurgy and materials 2019-01, Vol.64 (1), p.29-32
Main Authors: Lelito, J., Krawiec, H., Vignal, V., Gracz, B., Żak, P.L., Szucki, M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 32
container_issue 1
container_start_page 29
container_title Archives of metallurgy and materials
container_volume 64
creator Lelito, J.
Krawiec, H.
Vignal, V.
Gracz, B.
Żak, P.L.
Szucki, M.
description The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.
doi_str_mv 10.24425/amm.2019.126214
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bec5b88592c5470a8436ab53239ceb5a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bec5b88592c5470a8436ab53239ceb5a</doaj_id><sourcerecordid>2650311756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8fdd7974ca778715a6cdd52958893567bcf588114bc4202920118a087ce983393</originalsourceid><addsrcrecordid>eNpVkb1v2zAQxYUiARok2TsS6NTBDj9FcjSMNAngIkPaJQtxIimbhiSqpFwg3ft_l7aSouFyh8OP7_DuVdUngpeUcypuoO-XFBO9JLSmhH-oLijDeEE01mf_9R-r65z3uDyJOSH8ovrzLTrfdWHYIhgcyqE_dDCFOKDYomnnUQ_bwedw6NGYQg_pBY07yB7Z9JInKD9_z3gYTvjqWZObp7AekY39GHOYPHJ-9IPzw4QK10POqE1g35Yc4avqvIUu--vXeln9-Hr7fX2_2DzePaxXm4VldT0tVOuc1JJbkFJJIqC2zgmqhVKaiVo2ti1t8dVYTjHV5SJEAVbSeq0Y0-yyeph1XYS9eTVkIgRzGsS0NZCmYDtvGm9Fo5TQ1AouMSjOamgEo0xb3wgoWl9mrR1076TuVxtznGHKlKBS_SKF_TyzY4o_Dz5PZh8PaShWDa0FZoRIURcKz5RNMefk23-yBJtTzqbkbI45mzln9hcWtZnp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650311756</pqid></control><display><type>article</type><title>Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lelito, J. ; Krawiec, H. ; Vignal, V. ; Gracz, B. ; Żak, P.L. ; Szucki, M.</creator><creatorcontrib>Lelito, J. ; Krawiec, H. ; Vignal, V. ; Gracz, B. ; Żak, P.L. ; Szucki, M.</creatorcontrib><description>The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.</description><identifier>ISSN: 2300-1909</identifier><identifier>ISSN: 1733-3490</identifier><identifier>EISSN: 2300-1909</identifier><identifier>DOI: 10.24425/amm.2019.126214</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>Alloy systems ; az91/sicp composite ; Chemical Sciences ; Crystallization ; Density ; Empirical analysis ; Grain growth ; Grain size ; Heat transfer ; Magnesium alloys ; Magnesium base alloys ; Material chemistry ; Mathematical models ; micro-model ; Nucleation ; Numerical models ; numerical simulation ; Silicon carbide ; Simulation ; Solidification ; Supercooling</subject><ispartof>Archives of metallurgy and materials, 2019-01, Vol.64 (1), p.29-32</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2650311756?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02385278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Krawiec, H.</creatorcontrib><creatorcontrib>Vignal, V.</creatorcontrib><creatorcontrib>Gracz, B.</creatorcontrib><creatorcontrib>Żak, P.L.</creatorcontrib><creatorcontrib>Szucki, M.</creatorcontrib><title>Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp</title><title>Archives of metallurgy and materials</title><description>The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.</description><subject>Alloy systems</subject><subject>az91/sicp composite</subject><subject>Chemical Sciences</subject><subject>Crystallization</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Heat transfer</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Material chemistry</subject><subject>Mathematical models</subject><subject>micro-model</subject><subject>Nucleation</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Supercooling</subject><issn>2300-1909</issn><issn>1733-3490</issn><issn>2300-1909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkb1v2zAQxYUiARok2TsS6NTBDj9FcjSMNAngIkPaJQtxIimbhiSqpFwg3ft_l7aSouFyh8OP7_DuVdUngpeUcypuoO-XFBO9JLSmhH-oLijDeEE01mf_9R-r65z3uDyJOSH8ovrzLTrfdWHYIhgcyqE_dDCFOKDYomnnUQ_bwedw6NGYQg_pBY07yB7Z9JInKD9_z3gYTvjqWZObp7AekY39GHOYPHJ-9IPzw4QK10POqE1g35Yc4avqvIUu--vXeln9-Hr7fX2_2DzePaxXm4VldT0tVOuc1JJbkFJJIqC2zgmqhVKaiVo2ti1t8dVYTjHV5SJEAVbSeq0Y0-yyeph1XYS9eTVkIgRzGsS0NZCmYDtvGm9Fo5TQ1AouMSjOamgEo0xb3wgoWl9mrR1076TuVxtznGHKlKBS_SKF_TyzY4o_Dz5PZh8PaShWDa0FZoRIURcKz5RNMefk23-yBJtTzqbkbI45mzln9hcWtZnp</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lelito, J.</creator><creator>Krawiec, H.</creator><creator>Vignal, V.</creator><creator>Gracz, B.</creator><creator>Żak, P.L.</creator><creator>Szucki, M.</creator><general>Polish Academy of Sciences</general><general>Versita</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp</title><author>Lelito, J. ; Krawiec, H. ; Vignal, V. ; Gracz, B. ; Żak, P.L. ; Szucki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8fdd7974ca778715a6cdd52958893567bcf588114bc4202920118a087ce983393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy systems</topic><topic>az91/sicp composite</topic><topic>Chemical Sciences</topic><topic>Crystallization</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Heat transfer</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Material chemistry</topic><topic>Mathematical models</topic><topic>micro-model</topic><topic>Nucleation</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Supercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Krawiec, H.</creatorcontrib><creatorcontrib>Vignal, V.</creatorcontrib><creatorcontrib>Gracz, B.</creatorcontrib><creatorcontrib>Żak, P.L.</creatorcontrib><creatorcontrib>Szucki, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Archives of metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lelito, J.</au><au>Krawiec, H.</au><au>Vignal, V.</au><au>Gracz, B.</au><au>Żak, P.L.</au><au>Szucki, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp</atitle><jtitle>Archives of metallurgy and materials</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>64</volume><issue>1</issue><spage>29</spage><epage>32</epage><pages>29-32</pages><issn>2300-1909</issn><issn>1733-3490</issn><eissn>2300-1909</eissn><abstract>The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/amm.2019.126214</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-1909
ispartof Archives of metallurgy and materials, 2019-01, Vol.64 (1), p.29-32
issn 2300-1909
1733-3490
2300-1909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bec5b88592c5470a8436ab53239ceb5a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alloy systems
az91/sicp composite
Chemical Sciences
Crystallization
Density
Empirical analysis
Grain growth
Grain size
Heat transfer
Magnesium alloys
Magnesium base alloys
Material chemistry
Mathematical models
micro-model
Nucleation
Numerical models
numerical simulation
Silicon carbide
Simulation
Solidification
Supercooling
title Modelling and simulation of the magnesium primary phase crystallization in the AZ91/SiCp composite dependent on mass fraction of SiCp
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20simulation%20of%20the%20magnesium%20primary%20phase%20crystallization%20in%20the%20AZ91/SiCp%20composite%20dependent%20on%20mass%20fraction%20of%20SiCp&rft.jtitle=Archives%20of%20metallurgy%20and%20materials&rft.au=Lelito,%20J.&rft.date=2019-01-01&rft.volume=64&rft.issue=1&rft.spage=29&rft.epage=32&rft.pages=29-32&rft.issn=2300-1909&rft.eissn=2300-1909&rft_id=info:doi/10.24425/amm.2019.126214&rft_dat=%3Cproquest_doaj_%3E2650311756%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-8fdd7974ca778715a6cdd52958893567bcf588114bc4202920118a087ce983393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650311756&rft_id=info:pmid/&rfr_iscdi=true