Loading…
Fabrication of surface-functionalized PUA composites to achieve superhydrophobicity
Herein, we present a facile fabrication method to prepare the optically transparent, flexible and self-cleanable poly(urethane acrylate) (PUA) superhydrophobic film. The low surface energy siloxane functionalization on the thermally activated µ-patterned PUA/graphene oxide composite (S-PG) was found...
Saved in:
Published in: | Micro and nano systems letters 2019-08, Vol.7 (1), p.1-6, Article 12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, we present a facile fabrication method to prepare the optically transparent, flexible and self-cleanable poly(urethane acrylate) (PUA) superhydrophobic film. The low surface energy siloxane functionalization on the thermally activated µ-patterned PUA/graphene oxide composite (S-PG) was found to be a successful strategy to modify the PUA intrinsic hydrophilicity into superhydrophobic nature. The S-PG film (with GO content of 0.1 wt%) repeatedly showed the water contact angle (WCA) of 149.82 ± 1° with excellent self-cleaning property. Further, the fabricated film exhibited high optical transparency (80%) in the 400–800 nm wavelength region. Finally, the practical applicability of the fabricated S-PG film was demonstrated by using the film as a protective layer for solar panel module. The power conversion efficiency (PCE) of the solar module with and without S-PG superhydrophobic film was found to be 5.98% and 5.82%, respectively. The enhancement in the PCE performance of the solar module is attributed to the excellent optical transparent and less light reflecting nature of the proposed film. |
---|---|
ISSN: | 2213-9621 2213-9621 |
DOI: | 10.1186/s40486-019-0090-9 |