Loading…
In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data
The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines. It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making. In this paper, a machine...
Saved in:
Published in: | Propulsion and Power Research 2021-12, Vol.10 (4), p.360-373 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines. It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making. In this paper, a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades. The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature, as well as the engine operating environments and performance degradation. The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model, which comprises engine performance, blade stress, thermal, and creep life estimation models. The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan. |
---|---|
ISSN: | 2212-540X 2212-540X |
DOI: | 10.1016/j.jppr.2021.09.001 |