Loading…

Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery

Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited dru...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-05, Vol.12 (1), p.2875-17, Article 2875
Main Authors: Battiston, Kyle, Parrag, Ian, Statham, Matthew, Louka, Dimitra, Fischer, Hans, Mackey, Gillian, Daley, Adam, Gu, Fan, Baldwin, Emily, Yang, Bingqing, Muirhead, Ben, Hicks, Emily Anne, Sheardown, Heather, Kalachev, Leonid, Crean, Christopher, Edelman, Jeffrey, Santerre, J. Paul, Naimark, Wendy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303
cites cdi_FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303
container_end_page 17
container_issue 1
container_start_page 2875
container_title Nature communications
container_volume 12
creator Battiston, Kyle
Parrag, Ian
Statham, Matthew
Louka, Dimitra
Fischer, Hans
Mackey, Gillian
Daley, Adam
Gu, Fan
Baldwin, Emily
Yang, Bingqing
Muirhead, Ben
Hicks, Emily Anne
Sheardown, Heather
Kalachev, Leonid
Crean, Christopher
Edelman, Jeffrey
Santerre, J. Paul
Naimark, Wendy
description Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients. These implants undergo surface erosion, achieving tightly controlled and reproducible drug release kinetics in vitro. As an example, when used as ocular implants in rats, a dexamethasone dimer implant is shown to effectively inhibit inflammation induced by lipopolysaccharide. In a rabbit model, dexamethasone dimer intravitreal implants demonstrate predictable pharmacokinetics and significantly extend drug release duration and efficacy (>6 months) compared to a leading commercial polymeric dexamethasone-releasing implant. Polymer-based systems are often considered a necessity for controlled drug delivery, but have well-known limitations. Here, the authors report on drug delivery implants formed solely from corticosteroid dimers, which demonstrate controlled release and overcome many of the challenges of polymer-based systems.
doi_str_mv 10.1038/s41467-021-23232-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bef9dd810b064602859deb552da70df7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bef9dd810b064602859deb552da70df7</doaj_id><sourcerecordid>2528309767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303</originalsourceid><addsrcrecordid>eNp9kU1v3CAQhlHVqonS_IEeKks9uxm-DFwqVVE_IkVqD80ZYQa2XnnNFuxI--_DxkmaXAoHBuadZxi9hLyn8IkC1xdFUNGpFhhtGa-7Va_IKQNBW6oYf_0sPiHnpWyhLm6oFuItOeECgBrQp-TmVxoPu5DbmENofMrz4FOZQ04DNjjUTDPs9qOb5tLElKtimnMax4CNm7ApS5ndMNUb5mXTYBiH25AP78ib6MYSzh_OM3Lz7evvyx_t9c_vV5dfrlsvBcytUQbQaeQqKsYCat-Bwxh5z4XzfRdRRmPAuV46KbqgPQVvpFagNDAO_IxcrVxMbmv3edi5fLDJDfb-IeWNdceJxmD7EA2iptBDJzpgWhoMvZQMnQKMqrI-r6z90u8C-lAHdeML6MvMNPyxm3RrNWWGcl4BHx8AOf1dQpntNi15qvNbJpnmYFR3bMNWlc-plBziUwcK9uisXZ211Vl776w9Fn14_renkkcfq4CvglJT0ybkf73_g70DxMqwQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528309767</pqid></control><display><type>article</type><title>Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Battiston, Kyle ; Parrag, Ian ; Statham, Matthew ; Louka, Dimitra ; Fischer, Hans ; Mackey, Gillian ; Daley, Adam ; Gu, Fan ; Baldwin, Emily ; Yang, Bingqing ; Muirhead, Ben ; Hicks, Emily Anne ; Sheardown, Heather ; Kalachev, Leonid ; Crean, Christopher ; Edelman, Jeffrey ; Santerre, J. Paul ; Naimark, Wendy</creator><creatorcontrib>Battiston, Kyle ; Parrag, Ian ; Statham, Matthew ; Louka, Dimitra ; Fischer, Hans ; Mackey, Gillian ; Daley, Adam ; Gu, Fan ; Baldwin, Emily ; Yang, Bingqing ; Muirhead, Ben ; Hicks, Emily Anne ; Sheardown, Heather ; Kalachev, Leonid ; Crean, Christopher ; Edelman, Jeffrey ; Santerre, J. Paul ; Naimark, Wendy</creatorcontrib><description>Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients. These implants undergo surface erosion, achieving tightly controlled and reproducible drug release kinetics in vitro. As an example, when used as ocular implants in rats, a dexamethasone dimer implant is shown to effectively inhibit inflammation induced by lipopolysaccharide. In a rabbit model, dexamethasone dimer intravitreal implants demonstrate predictable pharmacokinetics and significantly extend drug release duration and efficacy (&gt;6 months) compared to a leading commercial polymeric dexamethasone-releasing implant. Polymer-based systems are often considered a necessity for controlled drug delivery, but have well-known limitations. Here, the authors report on drug delivery implants formed solely from corticosteroid dimers, which demonstrate controlled release and overcome many of the challenges of polymer-based systems.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23232-7</identifier><identifier>PMID: 34001908</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/152 ; 639/301/54/990 ; 639/638/309 ; Adrenal Cortex Hormones - administration &amp; dosage ; Adrenal Cortex Hormones - chemistry ; Adrenal Cortex Hormones - pharmacokinetics ; Animals ; Cells, Cultured ; Controlled release ; Corticoids ; Corticosteroids ; Delayed-Action Preparations - administration &amp; dosage ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - pharmacokinetics ; Dexamethasone ; Dexamethasone - administration &amp; dosage ; Dexamethasone - chemistry ; Dexamethasone - pharmacokinetics ; Dimerization ; Dimers ; Disease Models, Animal ; Drug carriers ; Drug delivery ; Drug Delivery Systems - methods ; Drug Implants ; Drug Liberation ; Erosion control ; Fabrication ; Humanities and Social Sciences ; Inflammation ; Kinetics ; Lipopolysaccharides ; Low molecular weights ; Molecular weight ; multidisciplinary ; Pharmacokinetics ; Polymers ; Polymers - chemistry ; Rabbits ; Rats ; Science ; Science (multidisciplinary) ; Surgical implants ; Transplants &amp; implants ; Uveitis - metabolism ; Uveitis - prevention &amp; control</subject><ispartof>Nature communications, 2021-05, Vol.12 (1), p.2875-17, Article 2875</ispartof><rights>Crown 2021</rights><rights>Crown 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303</citedby><cites>FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303</cites><orcidid>0000-0001-5251-6998 ; 0000-0001-9638-005X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528309767/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528309767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34001908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Battiston, Kyle</creatorcontrib><creatorcontrib>Parrag, Ian</creatorcontrib><creatorcontrib>Statham, Matthew</creatorcontrib><creatorcontrib>Louka, Dimitra</creatorcontrib><creatorcontrib>Fischer, Hans</creatorcontrib><creatorcontrib>Mackey, Gillian</creatorcontrib><creatorcontrib>Daley, Adam</creatorcontrib><creatorcontrib>Gu, Fan</creatorcontrib><creatorcontrib>Baldwin, Emily</creatorcontrib><creatorcontrib>Yang, Bingqing</creatorcontrib><creatorcontrib>Muirhead, Ben</creatorcontrib><creatorcontrib>Hicks, Emily Anne</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>Kalachev, Leonid</creatorcontrib><creatorcontrib>Crean, Christopher</creatorcontrib><creatorcontrib>Edelman, Jeffrey</creatorcontrib><creatorcontrib>Santerre, J. Paul</creatorcontrib><creatorcontrib>Naimark, Wendy</creatorcontrib><title>Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients. These implants undergo surface erosion, achieving tightly controlled and reproducible drug release kinetics in vitro. As an example, when used as ocular implants in rats, a dexamethasone dimer implant is shown to effectively inhibit inflammation induced by lipopolysaccharide. In a rabbit model, dexamethasone dimer intravitreal implants demonstrate predictable pharmacokinetics and significantly extend drug release duration and efficacy (&gt;6 months) compared to a leading commercial polymeric dexamethasone-releasing implant. Polymer-based systems are often considered a necessity for controlled drug delivery, but have well-known limitations. Here, the authors report on drug delivery implants formed solely from corticosteroid dimers, which demonstrate controlled release and overcome many of the challenges of polymer-based systems.</description><subject>631/154/152</subject><subject>639/301/54/990</subject><subject>639/638/309</subject><subject>Adrenal Cortex Hormones - administration &amp; dosage</subject><subject>Adrenal Cortex Hormones - chemistry</subject><subject>Adrenal Cortex Hormones - pharmacokinetics</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Controlled release</subject><subject>Corticoids</subject><subject>Corticosteroids</subject><subject>Delayed-Action Preparations - administration &amp; dosage</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - pharmacokinetics</subject><subject>Dexamethasone</subject><subject>Dexamethasone - administration &amp; dosage</subject><subject>Dexamethasone - chemistry</subject><subject>Dexamethasone - pharmacokinetics</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Disease Models, Animal</subject><subject>Drug carriers</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug Implants</subject><subject>Drug Liberation</subject><subject>Erosion control</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Inflammation</subject><subject>Kinetics</subject><subject>Lipopolysaccharides</subject><subject>Low molecular weights</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Pharmacokinetics</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surgical implants</subject><subject>Transplants &amp; implants</subject><subject>Uveitis - metabolism</subject><subject>Uveitis - prevention &amp; control</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v3CAQhlHVqonS_IEeKks9uxm-DFwqVVE_IkVqD80ZYQa2XnnNFuxI--_DxkmaXAoHBuadZxi9hLyn8IkC1xdFUNGpFhhtGa-7Va_IKQNBW6oYf_0sPiHnpWyhLm6oFuItOeECgBrQp-TmVxoPu5DbmENofMrz4FOZQ04DNjjUTDPs9qOb5tLElKtimnMax4CNm7ApS5ndMNUb5mXTYBiH25AP78ib6MYSzh_OM3Lz7evvyx_t9c_vV5dfrlsvBcytUQbQaeQqKsYCat-Bwxh5z4XzfRdRRmPAuV46KbqgPQVvpFagNDAO_IxcrVxMbmv3edi5fLDJDfb-IeWNdceJxmD7EA2iptBDJzpgWhoMvZQMnQKMqrI-r6z90u8C-lAHdeML6MvMNPyxm3RrNWWGcl4BHx8AOf1dQpntNi15qvNbJpnmYFR3bMNWlc-plBziUwcK9uisXZ211Vl776w9Fn14_renkkcfq4CvglJT0ybkf73_g70DxMqwQg</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Battiston, Kyle</creator><creator>Parrag, Ian</creator><creator>Statham, Matthew</creator><creator>Louka, Dimitra</creator><creator>Fischer, Hans</creator><creator>Mackey, Gillian</creator><creator>Daley, Adam</creator><creator>Gu, Fan</creator><creator>Baldwin, Emily</creator><creator>Yang, Bingqing</creator><creator>Muirhead, Ben</creator><creator>Hicks, Emily Anne</creator><creator>Sheardown, Heather</creator><creator>Kalachev, Leonid</creator><creator>Crean, Christopher</creator><creator>Edelman, Jeffrey</creator><creator>Santerre, J. Paul</creator><creator>Naimark, Wendy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5251-6998</orcidid><orcidid>https://orcid.org/0000-0001-9638-005X</orcidid></search><sort><creationdate>20210517</creationdate><title>Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery</title><author>Battiston, Kyle ; Parrag, Ian ; Statham, Matthew ; Louka, Dimitra ; Fischer, Hans ; Mackey, Gillian ; Daley, Adam ; Gu, Fan ; Baldwin, Emily ; Yang, Bingqing ; Muirhead, Ben ; Hicks, Emily Anne ; Sheardown, Heather ; Kalachev, Leonid ; Crean, Christopher ; Edelman, Jeffrey ; Santerre, J. Paul ; Naimark, Wendy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/154/152</topic><topic>639/301/54/990</topic><topic>639/638/309</topic><topic>Adrenal Cortex Hormones - administration &amp; dosage</topic><topic>Adrenal Cortex Hormones - chemistry</topic><topic>Adrenal Cortex Hormones - pharmacokinetics</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Controlled release</topic><topic>Corticoids</topic><topic>Corticosteroids</topic><topic>Delayed-Action Preparations - administration &amp; dosage</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - pharmacokinetics</topic><topic>Dexamethasone</topic><topic>Dexamethasone - administration &amp; dosage</topic><topic>Dexamethasone - chemistry</topic><topic>Dexamethasone - pharmacokinetics</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Disease Models, Animal</topic><topic>Drug carriers</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug Implants</topic><topic>Drug Liberation</topic><topic>Erosion control</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Inflammation</topic><topic>Kinetics</topic><topic>Lipopolysaccharides</topic><topic>Low molecular weights</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Pharmacokinetics</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surgical implants</topic><topic>Transplants &amp; implants</topic><topic>Uveitis - metabolism</topic><topic>Uveitis - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battiston, Kyle</creatorcontrib><creatorcontrib>Parrag, Ian</creatorcontrib><creatorcontrib>Statham, Matthew</creatorcontrib><creatorcontrib>Louka, Dimitra</creatorcontrib><creatorcontrib>Fischer, Hans</creatorcontrib><creatorcontrib>Mackey, Gillian</creatorcontrib><creatorcontrib>Daley, Adam</creatorcontrib><creatorcontrib>Gu, Fan</creatorcontrib><creatorcontrib>Baldwin, Emily</creatorcontrib><creatorcontrib>Yang, Bingqing</creatorcontrib><creatorcontrib>Muirhead, Ben</creatorcontrib><creatorcontrib>Hicks, Emily Anne</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>Kalachev, Leonid</creatorcontrib><creatorcontrib>Crean, Christopher</creatorcontrib><creatorcontrib>Edelman, Jeffrey</creatorcontrib><creatorcontrib>Santerre, J. Paul</creatorcontrib><creatorcontrib>Naimark, Wendy</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battiston, Kyle</au><au>Parrag, Ian</au><au>Statham, Matthew</au><au>Louka, Dimitra</au><au>Fischer, Hans</au><au>Mackey, Gillian</au><au>Daley, Adam</au><au>Gu, Fan</au><au>Baldwin, Emily</au><au>Yang, Bingqing</au><au>Muirhead, Ben</au><au>Hicks, Emily Anne</au><au>Sheardown, Heather</au><au>Kalachev, Leonid</au><au>Crean, Christopher</au><au>Edelman, Jeffrey</au><au>Santerre, J. Paul</au><au>Naimark, Wendy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>2875</spage><epage>17</epage><pages>2875-17</pages><artnum>2875</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients. These implants undergo surface erosion, achieving tightly controlled and reproducible drug release kinetics in vitro. As an example, when used as ocular implants in rats, a dexamethasone dimer implant is shown to effectively inhibit inflammation induced by lipopolysaccharide. In a rabbit model, dexamethasone dimer intravitreal implants demonstrate predictable pharmacokinetics and significantly extend drug release duration and efficacy (&gt;6 months) compared to a leading commercial polymeric dexamethasone-releasing implant. Polymer-based systems are often considered a necessity for controlled drug delivery, but have well-known limitations. Here, the authors report on drug delivery implants formed solely from corticosteroid dimers, which demonstrate controlled release and overcome many of the challenges of polymer-based systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34001908</pmid><doi>10.1038/s41467-021-23232-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5251-6998</orcidid><orcidid>https://orcid.org/0000-0001-9638-005X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-05, Vol.12 (1), p.2875-17, Article 2875
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bef9dd810b064602859deb552da70df7
source Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/154/152
639/301/54/990
639/638/309
Adrenal Cortex Hormones - administration & dosage
Adrenal Cortex Hormones - chemistry
Adrenal Cortex Hormones - pharmacokinetics
Animals
Cells, Cultured
Controlled release
Corticoids
Corticosteroids
Delayed-Action Preparations - administration & dosage
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - pharmacokinetics
Dexamethasone
Dexamethasone - administration & dosage
Dexamethasone - chemistry
Dexamethasone - pharmacokinetics
Dimerization
Dimers
Disease Models, Animal
Drug carriers
Drug delivery
Drug Delivery Systems - methods
Drug Implants
Drug Liberation
Erosion control
Fabrication
Humanities and Social Sciences
Inflammation
Kinetics
Lipopolysaccharides
Low molecular weights
Molecular weight
multidisciplinary
Pharmacokinetics
Polymers
Polymers - chemistry
Rabbits
Rats
Science
Science (multidisciplinary)
Surgical implants
Transplants & implants
Uveitis - metabolism
Uveitis - prevention & control
title Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-free%20corticosteroid%20dimer%20implants%20for%20controlled%20and%20sustained%20drug%20delivery&rft.jtitle=Nature%20communications&rft.au=Battiston,%20Kyle&rft.date=2021-05-17&rft.volume=12&rft.issue=1&rft.spage=2875&rft.epage=17&rft.pages=2875-17&rft.artnum=2875&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23232-7&rft_dat=%3Cproquest_doaj_%3E2528309767%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9790da8d37f722ed8c60adff3b34acb6fd5f990aab5a546e8c10c958707802303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528309767&rft_id=info:pmid/34001908&rfr_iscdi=true