Loading…

Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces

In this paper, we study the generalized multiple-set split feasibility problem including the common fixed-point problem for a finite family of generalized demimetric mappings and the monotone inclusion problem in 2-uniformly convex and uniformly smooth Banach spaces. We propose an inertial Halpern-t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications 2024-01, Vol.2024 (1), p.7-24, Article 7
Main Author: Eslamian, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c380t-e44cd7706367c823430dc371b52a2b2ce72b3473a900b8ba0a517819936e4ea73
container_end_page 24
container_issue 1
container_start_page 7
container_title Journal of inequalities and applications
container_volume 2024
creator Eslamian, Mohammad
description In this paper, we study the generalized multiple-set split feasibility problem including the common fixed-point problem for a finite family of generalized demimetric mappings and the monotone inclusion problem in 2-uniformly convex and uniformly smooth Banach spaces. We propose an inertial Halpern-type iterative algorithm for obtaining a solution of the problem and derive a strong convergence theorem for the algorithm. Then, we apply our convergence results to the convex minimization problem, the variational inequality problem, the multiple-set split feasibility problem and the split common null-point problem in Banach spaces.
doi_str_mv 10.1186/s13660-024-03082-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf0211b2976e489eb301074c626f7a84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf0211b2976e489eb301074c626f7a84</doaj_id><sourcerecordid>2916530041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e44cd7706367c823430dc371b52a2b2ce72b3473a900b8ba0a517819936e4ea73</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRcGb0D7gKuC69eXQlWeqgTsOAGwV34SZ9qztNuqpM0kL7641TorNylUs437mP03WvOLzh3AxvC5fDAD0I1YMEI3r7pLviIGwvlPj29FH9vLsu5QgguDTqqjtvJ8o1YmJ3mBbKU18vC7FYKWONP4hh2s851sOJjXNm9UBsTw3BFH_Sjp3OqcYlUV-osrKkWNlIWKKPrbywJc8-0YnFib3HCcOhaTBQedE9GzEVevnnvem-fvzw5fauv__8aXv77r4P0kDtSamw0xoGOehghFQSdkFq7jcChReBtPBSaYkWwBuPgBuuDbdWDqQItbzptqvvbsajW3I8Yb64GaN7-Jjz3mHbPiRyfmwn4V5Y3VhjyUvgoFUYxDBqNKp5vV692lLfz1SqO87nPLXxnbB82EgAxZtKrKqQ51IyjX-7cnC_o3JrVK5F5R6icrZBcoVKE097yv-s_0P9AstplxI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916530041</pqid></control><display><type>article</type><title>Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest - Publicly Available Content Database</source><creator>Eslamian, Mohammad</creator><creatorcontrib>Eslamian, Mohammad</creatorcontrib><description>In this paper, we study the generalized multiple-set split feasibility problem including the common fixed-point problem for a finite family of generalized demimetric mappings and the monotone inclusion problem in 2-uniformly convex and uniformly smooth Banach spaces. We propose an inertial Halpern-type iterative algorithm for obtaining a solution of the problem and derive a strong convergence theorem for the algorithm. Then, we apply our convergence results to the convex minimization problem, the variational inequality problem, the multiple-set split feasibility problem and the split common null-point problem in Banach spaces.</description><identifier>ISSN: 1029-242X</identifier><identifier>ISSN: 1025-5834</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/s13660-024-03082-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>2-uniformly convex Banach space ; Algorithms ; Analysis ; Applications of Mathematics ; Applied mathematics ; Banach spaces ; Convergence ; Feasibility ; Generalized demimetric mappings ; Hilbert space ; Iterative algorithms ; Mathematics ; Mathematics and Statistics ; Monotone inclusion problem ; Multiple-set split feasibility problem</subject><ispartof>Journal of inequalities and applications, 2024-01, Vol.2024 (1), p.7-24, Article 7</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-e44cd7706367c823430dc371b52a2b2ce72b3473a900b8ba0a517819936e4ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2916530041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2916530041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Eslamian, Mohammad</creatorcontrib><title>Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces</title><title>Journal of inequalities and applications</title><addtitle>J Inequal Appl</addtitle><description>In this paper, we study the generalized multiple-set split feasibility problem including the common fixed-point problem for a finite family of generalized demimetric mappings and the monotone inclusion problem in 2-uniformly convex and uniformly smooth Banach spaces. We propose an inertial Halpern-type iterative algorithm for obtaining a solution of the problem and derive a strong convergence theorem for the algorithm. Then, we apply our convergence results to the convex minimization problem, the variational inequality problem, the multiple-set split feasibility problem and the split common null-point problem in Banach spaces.</description><subject>2-uniformly convex Banach space</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Banach spaces</subject><subject>Convergence</subject><subject>Feasibility</subject><subject>Generalized demimetric mappings</subject><subject>Hilbert space</subject><subject>Iterative algorithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monotone inclusion problem</subject><subject>Multiple-set split feasibility problem</subject><issn>1029-242X</issn><issn>1025-5834</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUuLFDEUhQtRcGb0D7gKuC69eXQlWeqgTsOAGwV34SZ9qztNuqpM0kL7641TorNylUs437mP03WvOLzh3AxvC5fDAD0I1YMEI3r7pLviIGwvlPj29FH9vLsu5QgguDTqqjtvJ8o1YmJ3mBbKU18vC7FYKWONP4hh2s851sOJjXNm9UBsTw3BFH_Sjp3OqcYlUV-osrKkWNlIWKKPrbywJc8-0YnFib3HCcOhaTBQedE9GzEVevnnvem-fvzw5fauv__8aXv77r4P0kDtSamw0xoGOehghFQSdkFq7jcChReBtPBSaYkWwBuPgBuuDbdWDqQItbzptqvvbsajW3I8Yb64GaN7-Jjz3mHbPiRyfmwn4V5Y3VhjyUvgoFUYxDBqNKp5vV692lLfz1SqO87nPLXxnbB82EgAxZtKrKqQ51IyjX-7cnC_o3JrVK5F5R6icrZBcoVKE097yv-s_0P9AstplxI</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Eslamian, Mohammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20240119</creationdate><title>Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces</title><author>Eslamian, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e44cd7706367c823430dc371b52a2b2ce72b3473a900b8ba0a517819936e4ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2-uniformly convex Banach space</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Banach spaces</topic><topic>Convergence</topic><topic>Feasibility</topic><topic>Generalized demimetric mappings</topic><topic>Hilbert space</topic><topic>Iterative algorithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monotone inclusion problem</topic><topic>Multiple-set split feasibility problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eslamian, Mohammad</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eslamian, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces</atitle><jtitle>Journal of inequalities and applications</jtitle><stitle>J Inequal Appl</stitle><date>2024-01-19</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><spage>7</spage><epage>24</epage><pages>7-24</pages><artnum>7</artnum><issn>1029-242X</issn><issn>1025-5834</issn><eissn>1029-242X</eissn><abstract>In this paper, we study the generalized multiple-set split feasibility problem including the common fixed-point problem for a finite family of generalized demimetric mappings and the monotone inclusion problem in 2-uniformly convex and uniformly smooth Banach spaces. We propose an inertial Halpern-type iterative algorithm for obtaining a solution of the problem and derive a strong convergence theorem for the algorithm. Then, we apply our convergence results to the convex minimization problem, the variational inequality problem, the multiple-set split feasibility problem and the split common null-point problem in Banach spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13660-024-03082-9</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-242X
ispartof Journal of inequalities and applications, 2024-01, Vol.2024 (1), p.7-24, Article 7
issn 1029-242X
1025-5834
1029-242X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bf0211b2976e489eb301074c626f7a84
source Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest - Publicly Available Content Database
subjects 2-uniformly convex Banach space
Algorithms
Analysis
Applications of Mathematics
Applied mathematics
Banach spaces
Convergence
Feasibility
Generalized demimetric mappings
Hilbert space
Iterative algorithms
Mathematics
Mathematics and Statistics
Monotone inclusion problem
Multiple-set split feasibility problem
title Inertial Halpern-type iterative algorithm for the generalized multiple-set split feasibility problem in Banach spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20Halpern-type%20iterative%20algorithm%20for%20the%20generalized%20multiple-set%20split%20feasibility%20problem%20in%20Banach%20spaces&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Eslamian,%20Mohammad&rft.date=2024-01-19&rft.volume=2024&rft.issue=1&rft.spage=7&rft.epage=24&rft.pages=7-24&rft.artnum=7&rft.issn=1029-242X&rft.eissn=1029-242X&rft_id=info:doi/10.1186/s13660-024-03082-9&rft_dat=%3Cproquest_doaj_%3E2916530041%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-e44cd7706367c823430dc371b52a2b2ce72b3473a900b8ba0a517819936e4ea73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916530041&rft_id=info:pmid/&rfr_iscdi=true