Loading…

Microwave-Assisted Solvothermal Synthesis of UiO-66-NH2 and Its Catalytic Performance toward the Hydrolysis of a Nerve Agent Simulant

Zr-containing metal-organic frameworks (MOFs) exhibit a good performance of catalyzing the hydrolysis of chemical warfare agents, which is closely related to the size of MOF particles and its defects, but these two factors are often intertwined. In this article, we synthesized UiO-66-NH2 nanoparticl...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2020-09, Vol.10 (9), p.1086
Main Authors: Zhang, Zenghui, Tao, Cheng-An, Zhao, Jie, Wang, Fang, Huang, Jian, Wang, Jianfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zr-containing metal-organic frameworks (MOFs) exhibit a good performance of catalyzing the hydrolysis of chemical warfare agents, which is closely related to the size of MOF particles and its defects, but these two factors are often intertwined. In this article, we synthesized UiO-66-NH2 nanoparticles using a microwave-assisted hydrothermal method. By using a new modulator 4-Fluoro-3-Formyl-Benzoic Acid (FFBA) in different proportions, MOF particles with the same defect degree but different scales and those with similar sizes but different defect degrees can be obtained. The performance of the obtained MOF particles to catalyze the hydrolysis of the nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was investigated, and the effects of single factors of size or defect were compared for the first time. As the size of the obtained MOF particles increased from 81 nm to 159 nm, the catalytic degradation efficiency toward DMNP gradually decreased, and the half-life increased from 3.9 min to 11.1 min. For MOFs that have similar crystal sizes, the catalytic degradation half-life of MOF3 is only 5 min, which is much smaller than that of MOF5 due to the defects increase from 1.2 to 1.8 per Zr6 cluster.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10091086