Loading…

On the 4d superconformal index near roots of unity: bulk and localized contributions

A bstract We study the expansion near roots of unity of the superconformal index of 4d SU( N ) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity are shown to emerge in the complex analytic extension of the integrand. These walls intersect the integration contour at infinit...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-02, Vol.2023 (2), p.134-61, Article 134
Main Author: Cabo-Bizet, Alejandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53
cites cdi_FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53
container_end_page 61
container_issue 2
container_start_page 134
container_title The journal of high energy physics
container_volume 2023
creator Cabo-Bizet, Alejandro
description A bstract We study the expansion near roots of unity of the superconformal index of 4d SU( N ) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity are shown to emerge in the complex analytic extension of the integrand. These walls intersect the integration contour at infinitesimal vicinities and come from both, the vector and chiral multiplet contributions, and combinations thereof. We will call these intersections vector and chiral bits , and the complementary region bulk , and show that, in the corresponding limit, the integrals along the infinitesimal bits include, among other contributions, factorized products of either Chern-Simons and 3d topologically twisted partition functions. In particular, we find that the leading asymptotic contribution to the index, which comes from collecting all contributions coming from vector bits, reduces to an average over a set of N copies of three-dimensional SU( N ) Chern-Simons partition functions in Lens spaces L ( m , 1) with m > 1, in the presence of background Z m N − 1 flat connections. The average is taken over the background connections, which are the positions of individual vector bits along the contour. We also find there are other subleading contributions, a finite number of them at finite N , which include averages over products of Chern-Simons and/or topologically A -twisted Chern-Simons-matter partition functions in three-dimensional manifolds. This shows how in certain limits the index of 4d SU( N ) N = 4 SYM organizes, via an unambiguously defined coarse graining procedure, into averages over a finite number of lower dimensional theories.
doi_str_mv 10.1007/JHEP02(2023)134
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf6f5da0a5b84786b94c05a62278c210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf6f5da0a5b84786b94c05a62278c210</doaj_id><sourcerecordid>2784119242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYso-Hn2GvCih9V8No03EXWVBT3oOUzSdO3aTdakBfWvN1pRL3qaYfi9x2NeUewTfEwwlic304s7TA8ppuyIML5WbBFM1aTiUq3_2jeL7ZQWGBNBFN4q7m896h8d4jVKw8pFG3wT4hI61PravSDvIKIYQp9QaNDg2_71FJmhe0Lga9QFC1375mqUdX1szdC3wafdYqOBLrm9r7lTPFxe3J9PJ7Pbq-vzs9nEci76SVOz0pZKCamscVA7XBnhpGIVI1RRWUJljAEFinEhygqUc4opYysmpGgE2ymuR986wEKvYruE-KoDtPrzEOJcQ-xb2zltmrIRNWAQJn-hKo3iFgsoKZWVpQRnr4PRaxXD8-BSrxdhiD7H1xnhhCjK6f-UlEQyTMtMnYyUjSGl6JrvbATrj7L0WJb-KEvnsrICj4qUST938cf3L8k7VneUqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777173026</pqid></control><display><type>article</type><title>On the 4d superconformal index near roots of unity: bulk and localized contributions</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Cabo-Bizet, Alejandro</creator><creatorcontrib>Cabo-Bizet, Alejandro</creatorcontrib><description>A bstract We study the expansion near roots of unity of the superconformal index of 4d SU( N ) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity are shown to emerge in the complex analytic extension of the integrand. These walls intersect the integration contour at infinitesimal vicinities and come from both, the vector and chiral multiplet contributions, and combinations thereof. We will call these intersections vector and chiral bits , and the complementary region bulk , and show that, in the corresponding limit, the integrals along the infinitesimal bits include, among other contributions, factorized products of either Chern-Simons and 3d topologically twisted partition functions. In particular, we find that the leading asymptotic contribution to the index, which comes from collecting all contributions coming from vector bits, reduces to an average over a set of N copies of three-dimensional SU( N ) Chern-Simons partition functions in Lens spaces L ( m , 1) with m &gt; 1, in the presence of background Z m N − 1 flat connections. The average is taken over the background connections, which are the positions of individual vector bits along the contour. We also find there are other subleading contributions, a finite number of them at finite N , which include averages over products of Chern-Simons and/or topologically A -twisted Chern-Simons-matter partition functions in three-dimensional manifolds. This shows how in certain limits the index of 4d SU( N ) N = 4 SYM organizes, via an unambiguously defined coarse graining procedure, into averages over a finite number of lower dimensional theories.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2023)134</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AdS-CFT Correspondence ; Black Holes in String Theory ; Classical and Quantum Gravitation ; Contours ; Dimensional analysis ; Elementary Particles ; Granulation ; High energy physics ; Partitions (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Roots ; String Theory ; Supersymmetric Gauge Theory ; Unity</subject><ispartof>The journal of high energy physics, 2023-02, Vol.2023 (2), p.134-61, Article 134</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53</citedby><cites>FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2777173026/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777173026?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Cabo-Bizet, Alejandro</creatorcontrib><title>On the 4d superconformal index near roots of unity: bulk and localized contributions</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We study the expansion near roots of unity of the superconformal index of 4d SU( N ) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity are shown to emerge in the complex analytic extension of the integrand. These walls intersect the integration contour at infinitesimal vicinities and come from both, the vector and chiral multiplet contributions, and combinations thereof. We will call these intersections vector and chiral bits , and the complementary region bulk , and show that, in the corresponding limit, the integrals along the infinitesimal bits include, among other contributions, factorized products of either Chern-Simons and 3d topologically twisted partition functions. In particular, we find that the leading asymptotic contribution to the index, which comes from collecting all contributions coming from vector bits, reduces to an average over a set of N copies of three-dimensional SU( N ) Chern-Simons partition functions in Lens spaces L ( m , 1) with m &gt; 1, in the presence of background Z m N − 1 flat connections. The average is taken over the background connections, which are the positions of individual vector bits along the contour. We also find there are other subleading contributions, a finite number of them at finite N , which include averages over products of Chern-Simons and/or topologically A -twisted Chern-Simons-matter partition functions in three-dimensional manifolds. This shows how in certain limits the index of 4d SU( N ) N = 4 SYM organizes, via an unambiguously defined coarse graining procedure, into averages over a finite number of lower dimensional theories.</description><subject>AdS-CFT Correspondence</subject><subject>Black Holes in String Theory</subject><subject>Classical and Quantum Gravitation</subject><subject>Contours</subject><subject>Dimensional analysis</subject><subject>Elementary Particles</subject><subject>Granulation</subject><subject>High energy physics</subject><subject>Partitions (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Roots</subject><subject>String Theory</subject><subject>Supersymmetric Gauge Theory</subject><subject>Unity</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1LxDAQxYso-Hn2GvCih9V8No03EXWVBT3oOUzSdO3aTdakBfWvN1pRL3qaYfi9x2NeUewTfEwwlic304s7TA8ppuyIML5WbBFM1aTiUq3_2jeL7ZQWGBNBFN4q7m896h8d4jVKw8pFG3wT4hI61PravSDvIKIYQp9QaNDg2_71FJmhe0Lga9QFC1375mqUdX1szdC3wafdYqOBLrm9r7lTPFxe3J9PJ7Pbq-vzs9nEci76SVOz0pZKCamscVA7XBnhpGIVI1RRWUJljAEFinEhygqUc4opYysmpGgE2ymuR986wEKvYruE-KoDtPrzEOJcQ-xb2zltmrIRNWAQJn-hKo3iFgsoKZWVpQRnr4PRaxXD8-BSrxdhiD7H1xnhhCjK6f-UlEQyTMtMnYyUjSGl6JrvbATrj7L0WJb-KEvnsrICj4qUST938cf3L8k7VneUqg</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Cabo-Bizet, Alejandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20230213</creationdate><title>On the 4d superconformal index near roots of unity: bulk and localized contributions</title><author>Cabo-Bizet, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AdS-CFT Correspondence</topic><topic>Black Holes in String Theory</topic><topic>Classical and Quantum Gravitation</topic><topic>Contours</topic><topic>Dimensional analysis</topic><topic>Elementary Particles</topic><topic>Granulation</topic><topic>High energy physics</topic><topic>Partitions (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Roots</topic><topic>String Theory</topic><topic>Supersymmetric Gauge Theory</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabo-Bizet, Alejandro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabo-Bizet, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the 4d superconformal index near roots of unity: bulk and localized contributions</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-02-13</date><risdate>2023</risdate><volume>2023</volume><issue>2</issue><spage>134</spage><epage>61</epage><pages>134-61</pages><artnum>134</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We study the expansion near roots of unity of the superconformal index of 4d SU( N ) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity are shown to emerge in the complex analytic extension of the integrand. These walls intersect the integration contour at infinitesimal vicinities and come from both, the vector and chiral multiplet contributions, and combinations thereof. We will call these intersections vector and chiral bits , and the complementary region bulk , and show that, in the corresponding limit, the integrals along the infinitesimal bits include, among other contributions, factorized products of either Chern-Simons and 3d topologically twisted partition functions. In particular, we find that the leading asymptotic contribution to the index, which comes from collecting all contributions coming from vector bits, reduces to an average over a set of N copies of three-dimensional SU( N ) Chern-Simons partition functions in Lens spaces L ( m , 1) with m &gt; 1, in the presence of background Z m N − 1 flat connections. The average is taken over the background connections, which are the positions of individual vector bits along the contour. We also find there are other subleading contributions, a finite number of them at finite N , which include averages over products of Chern-Simons and/or topologically A -twisted Chern-Simons-matter partition functions in three-dimensional manifolds. This shows how in certain limits the index of 4d SU( N ) N = 4 SYM organizes, via an unambiguously defined coarse graining procedure, into averages over a finite number of lower dimensional theories.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2023)134</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-02, Vol.2023 (2), p.134-61, Article 134
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bf6f5da0a5b84786b94c05a62278c210
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects AdS-CFT Correspondence
Black Holes in String Theory
Classical and Quantum Gravitation
Contours
Dimensional analysis
Elementary Particles
Granulation
High energy physics
Partitions (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Roots
String Theory
Supersymmetric Gauge Theory
Unity
title On the 4d superconformal index near roots of unity: bulk and localized contributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%204d%20superconformal%20index%20near%20roots%20of%20unity:%20bulk%20and%20localized%20contributions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cabo-Bizet,%20Alejandro&rft.date=2023-02-13&rft.volume=2023&rft.issue=2&rft.spage=134&rft.epage=61&rft.pages=134-61&rft.artnum=134&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2023)134&rft_dat=%3Cproquest_doaj_%3E2784119242%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-fd36c699579cbeade08b5e79383129276a8bbba9a9345568a9ee939bc83575f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777173026&rft_id=info:pmid/&rfr_iscdi=true