Loading…
Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO
The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferro...
Saved in:
Published in: | Nature communications 2021-06, Vol.12 (1), p.3952-3952, Article 3952 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3 |
container_end_page | 3952 |
container_issue | 1 |
container_start_page | 3952 |
container_title | Nature communications |
container_volume | 12 |
creator | Chen, Rui Luo, Fuchuan Liu, Yuzi Song, Yu Dong, Yu Wu, Shan Cao, Jinhua Yang, Fuyi N’Diaye, Alpha Shafer, Padraic Liu, Yin Lou, Shuai Huang, Junwei Chen, Xiang Fang, Zixuan Wang, Qingjun Jin, Dafei Cheng, Ran Yuan, Hongtao Birgeneau, Robert J. Yao, Jie |
description | The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co
2+
states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.
Van der Waals magnetic materials (vdWs) have allowed for the exploration of the two dimensional limit of magnetism, however, most vdWs are only magnetic at low temperature. Herein, the authors overcome this limitation, observing room temperature magnetic ordering in Cobalt doped graphene-like Zinc-Oxide. |
doi_str_mv | 10.1038/s41467-021-24247-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf6f6ed8f7c8435097083f27c79cbf4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf6f6ed8f7c8435097083f27c79cbf4f</doaj_id><sourcerecordid>2544988319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3</originalsourceid><addsrcrecordid>eNp9kk9rFTEUxQdRbHn2C7gadONmNH_uTCYbQR5VC4VuWgQ3IZO5ec1jJnkmmRa_vembotaFgZBL7jm_hORU1WtK3lPC-w8JKHSiIYw2DBiI5v5ZdcoI0IYKxp__VZ9UZyntSRlc0h7gZXXCoTQEkNPq5nrxepiwjiHMTcb5gFHnJWJtMcYw653H7NJcO19vQzOGA451vi-Vm9EnF7ye6jvt6xFj_U3rKdXf_dWr6oUtJZ49rpvq5vP59fZrc3n15WL76bIxLUBuDKEMRgN6MK20g2TQDYPoOstbMgqmGSWSGE0BrICeWcJHrqmQtuWk5QL5prpYuWPQe3WIbtbxpwraqeNGiDulY3ZmQjXYznY49laYHgpfCtJzy4QR0gwWbGF9XFmHZZhxNOhz1NMT6NOOd7dqF-5UzzjnZW6qNysgpOxUMi6juTXBezRZ0Z61naRF9O7xlBh-LJiyml0yOE3aY1iSYi20rSy_9CB9-490H5ZY3vuoAtn3nMqiYqvKxJBSRPv7xpSoh6SoNSmqJEUdk6Lui4mvplTEfofxD_o_rl9Fub8E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544988319</pqid></control><display><type>article</type><title>Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Rui ; Luo, Fuchuan ; Liu, Yuzi ; Song, Yu ; Dong, Yu ; Wu, Shan ; Cao, Jinhua ; Yang, Fuyi ; N’Diaye, Alpha ; Shafer, Padraic ; Liu, Yin ; Lou, Shuai ; Huang, Junwei ; Chen, Xiang ; Fang, Zixuan ; Wang, Qingjun ; Jin, Dafei ; Cheng, Ran ; Yuan, Hongtao ; Birgeneau, Robert J. ; Yao, Jie</creator><creatorcontrib>Chen, Rui ; Luo, Fuchuan ; Liu, Yuzi ; Song, Yu ; Dong, Yu ; Wu, Shan ; Cao, Jinhua ; Yang, Fuyi ; N’Diaye, Alpha ; Shafer, Padraic ; Liu, Yin ; Lou, Shuai ; Huang, Junwei ; Chen, Xiang ; Fang, Zixuan ; Wang, Qingjun ; Jin, Dafei ; Cheng, Ran ; Yuan, Hongtao ; Birgeneau, Robert J. ; Yao, Jie ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co
2+
states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.
Van der Waals magnetic materials (vdWs) have allowed for the exploration of the two dimensional limit of magnetism, however, most vdWs are only magnetic at low temperature. Herein, the authors overcome this limitation, observing room temperature magnetic ordering in Cobalt doped graphene-like Zinc-Oxide.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24247-w</identifier><identifier>PMID: 34172740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 142/126 ; 147/135 ; 147/143 ; 147/28 ; 147/3 ; 639/301/119/997 ; 639/925/357/997 ; Air temperature ; Atomic force microscopy ; Carbon dioxide ; Circular dichroism ; Cobalt ; Cobalt oxides ; Crystals ; Curie temperature ; Dichroism ; Ferromagnetic materials ; Graphene ; Humanities and Social Sciences ; Kerr magnetooptical effect ; Low temperature ; Magnetic materials ; magnetic properties and materials ; Magnetism ; MATERIALS SCIENCE ; Microscopy ; multidisciplinary ; Oxides ; Room temperature ; Science ; Science (multidisciplinary) ; Superconducting quantum interference devices ; Transmission electron microscopy ; Zinc oxide ; Zinc oxides</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3952-3952, Article 3952</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3</citedby><cites>FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3</cites><orcidid>0000-0002-8733-1683 ; 0000-0003-0557-759X ; 0000-0003-1776-9863 ; 0000-0003-0166-2172 ; 0000-0003-1192-8333 ; 0000-0003-3997-8148 ; 0000-0002-8035-3580 ; 0000-0002-3063-0252 ; 0000-0001-9363-2557 ; 0000-0001-9429-9776 ; 0000-0002-5234-6922 ; 0000000317769863 ; 0000000230630252 ; 0000000280353580 ; 0000000194299776 ; 0000000252346922 ; 0000000287331683 ; 0000000311928333 ; 0000000339978148 ; 0000000193632557 ; 0000000301662172 ; 000000030557759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544988319/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544988319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1825691$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Luo, Fuchuan</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Cao, Jinhua</creatorcontrib><creatorcontrib>Yang, Fuyi</creatorcontrib><creatorcontrib>N’Diaye, Alpha</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Liu, Yin</creatorcontrib><creatorcontrib>Lou, Shuai</creatorcontrib><creatorcontrib>Huang, Junwei</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Fang, Zixuan</creatorcontrib><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Jin, Dafei</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Yuan, Hongtao</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co
2+
states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.
Van der Waals magnetic materials (vdWs) have allowed for the exploration of the two dimensional limit of magnetism, however, most vdWs are only magnetic at low temperature. Herein, the authors overcome this limitation, observing room temperature magnetic ordering in Cobalt doped graphene-like Zinc-Oxide.</description><subject>140/146</subject><subject>142/126</subject><subject>147/135</subject><subject>147/143</subject><subject>147/28</subject><subject>147/3</subject><subject>639/301/119/997</subject><subject>639/925/357/997</subject><subject>Air temperature</subject><subject>Atomic force microscopy</subject><subject>Carbon dioxide</subject><subject>Circular dichroism</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Crystals</subject><subject>Curie temperature</subject><subject>Dichroism</subject><subject>Ferromagnetic materials</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Kerr magnetooptical effect</subject><subject>Low temperature</subject><subject>Magnetic materials</subject><subject>magnetic properties and materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconducting quantum interference devices</subject><subject>Transmission electron microscopy</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9rFTEUxQdRbHn2C7gadONmNH_uTCYbQR5VC4VuWgQ3IZO5ec1jJnkmmRa_vembotaFgZBL7jm_hORU1WtK3lPC-w8JKHSiIYw2DBiI5v5ZdcoI0IYKxp__VZ9UZyntSRlc0h7gZXXCoTQEkNPq5nrxepiwjiHMTcb5gFHnJWJtMcYw653H7NJcO19vQzOGA451vi-Vm9EnF7ye6jvt6xFj_U3rKdXf_dWr6oUtJZ49rpvq5vP59fZrc3n15WL76bIxLUBuDKEMRgN6MK20g2TQDYPoOstbMgqmGSWSGE0BrICeWcJHrqmQtuWk5QL5prpYuWPQe3WIbtbxpwraqeNGiDulY3ZmQjXYznY49laYHgpfCtJzy4QR0gwWbGF9XFmHZZhxNOhz1NMT6NOOd7dqF-5UzzjnZW6qNysgpOxUMi6juTXBezRZ0Z61naRF9O7xlBh-LJiyml0yOE3aY1iSYi20rSy_9CB9-490H5ZY3vuoAtn3nMqiYqvKxJBSRPv7xpSoh6SoNSmqJEUdk6Lui4mvplTEfofxD_o_rl9Fub8E</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Chen, Rui</creator><creator>Luo, Fuchuan</creator><creator>Liu, Yuzi</creator><creator>Song, Yu</creator><creator>Dong, Yu</creator><creator>Wu, Shan</creator><creator>Cao, Jinhua</creator><creator>Yang, Fuyi</creator><creator>N’Diaye, Alpha</creator><creator>Shafer, Padraic</creator><creator>Liu, Yin</creator><creator>Lou, Shuai</creator><creator>Huang, Junwei</creator><creator>Chen, Xiang</creator><creator>Fang, Zixuan</creator><creator>Wang, Qingjun</creator><creator>Jin, Dafei</creator><creator>Cheng, Ran</creator><creator>Yuan, Hongtao</creator><creator>Birgeneau, Robert J.</creator><creator>Yao, Jie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-0557-759X</orcidid><orcidid>https://orcid.org/0000-0003-1776-9863</orcidid><orcidid>https://orcid.org/0000-0003-0166-2172</orcidid><orcidid>https://orcid.org/0000-0003-1192-8333</orcidid><orcidid>https://orcid.org/0000-0003-3997-8148</orcidid><orcidid>https://orcid.org/0000-0002-8035-3580</orcidid><orcidid>https://orcid.org/0000-0002-3063-0252</orcidid><orcidid>https://orcid.org/0000-0001-9363-2557</orcidid><orcidid>https://orcid.org/0000-0001-9429-9776</orcidid><orcidid>https://orcid.org/0000-0002-5234-6922</orcidid><orcidid>https://orcid.org/0000000317769863</orcidid><orcidid>https://orcid.org/0000000230630252</orcidid><orcidid>https://orcid.org/0000000280353580</orcidid><orcidid>https://orcid.org/0000000194299776</orcidid><orcidid>https://orcid.org/0000000252346922</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid><orcidid>https://orcid.org/0000000311928333</orcidid><orcidid>https://orcid.org/0000000339978148</orcidid><orcidid>https://orcid.org/0000000193632557</orcidid><orcidid>https://orcid.org/0000000301662172</orcidid><orcidid>https://orcid.org/000000030557759X</orcidid></search><sort><creationdate>20210625</creationdate><title>Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO</title><author>Chen, Rui ; Luo, Fuchuan ; Liu, Yuzi ; Song, Yu ; Dong, Yu ; Wu, Shan ; Cao, Jinhua ; Yang, Fuyi ; N’Diaye, Alpha ; Shafer, Padraic ; Liu, Yin ; Lou, Shuai ; Huang, Junwei ; Chen, Xiang ; Fang, Zixuan ; Wang, Qingjun ; Jin, Dafei ; Cheng, Ran ; Yuan, Hongtao ; Birgeneau, Robert J. ; Yao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/146</topic><topic>142/126</topic><topic>147/135</topic><topic>147/143</topic><topic>147/28</topic><topic>147/3</topic><topic>639/301/119/997</topic><topic>639/925/357/997</topic><topic>Air temperature</topic><topic>Atomic force microscopy</topic><topic>Carbon dioxide</topic><topic>Circular dichroism</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Crystals</topic><topic>Curie temperature</topic><topic>Dichroism</topic><topic>Ferromagnetic materials</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Kerr magnetooptical effect</topic><topic>Low temperature</topic><topic>Magnetic materials</topic><topic>magnetic properties and materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconducting quantum interference devices</topic><topic>Transmission electron microscopy</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Luo, Fuchuan</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Cao, Jinhua</creatorcontrib><creatorcontrib>Yang, Fuyi</creatorcontrib><creatorcontrib>N’Diaye, Alpha</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Liu, Yin</creatorcontrib><creatorcontrib>Lou, Shuai</creatorcontrib><creatorcontrib>Huang, Junwei</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Fang, Zixuan</creatorcontrib><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Jin, Dafei</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Yuan, Hongtao</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rui</au><au>Luo, Fuchuan</au><au>Liu, Yuzi</au><au>Song, Yu</au><au>Dong, Yu</au><au>Wu, Shan</au><au>Cao, Jinhua</au><au>Yang, Fuyi</au><au>N’Diaye, Alpha</au><au>Shafer, Padraic</au><au>Liu, Yin</au><au>Lou, Shuai</au><au>Huang, Junwei</au><au>Chen, Xiang</au><au>Fang, Zixuan</au><au>Wang, Qingjun</au><au>Jin, Dafei</au><au>Cheng, Ran</au><au>Yuan, Hongtao</au><au>Birgeneau, Robert J.</au><au>Yao, Jie</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-06-25</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3952</spage><epage>3952</epage><pages>3952-3952</pages><artnum>3952</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co
2+
states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.
Van der Waals magnetic materials (vdWs) have allowed for the exploration of the two dimensional limit of magnetism, however, most vdWs are only magnetic at low temperature. Herein, the authors overcome this limitation, observing room temperature magnetic ordering in Cobalt doped graphene-like Zinc-Oxide.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34172740</pmid><doi>10.1038/s41467-021-24247-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-0557-759X</orcidid><orcidid>https://orcid.org/0000-0003-1776-9863</orcidid><orcidid>https://orcid.org/0000-0003-0166-2172</orcidid><orcidid>https://orcid.org/0000-0003-1192-8333</orcidid><orcidid>https://orcid.org/0000-0003-3997-8148</orcidid><orcidid>https://orcid.org/0000-0002-8035-3580</orcidid><orcidid>https://orcid.org/0000-0002-3063-0252</orcidid><orcidid>https://orcid.org/0000-0001-9363-2557</orcidid><orcidid>https://orcid.org/0000-0001-9429-9776</orcidid><orcidid>https://orcid.org/0000-0002-5234-6922</orcidid><orcidid>https://orcid.org/0000000317769863</orcidid><orcidid>https://orcid.org/0000000230630252</orcidid><orcidid>https://orcid.org/0000000280353580</orcidid><orcidid>https://orcid.org/0000000194299776</orcidid><orcidid>https://orcid.org/0000000252346922</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid><orcidid>https://orcid.org/0000000311928333</orcidid><orcidid>https://orcid.org/0000000339978148</orcidid><orcidid>https://orcid.org/0000000193632557</orcidid><orcidid>https://orcid.org/0000000301662172</orcidid><orcidid>https://orcid.org/000000030557759X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-06, Vol.12 (1), p.3952-3952, Article 3952 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bf6f6ed8f7c8435097083f27c79cbf4f |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/146 142/126 147/135 147/143 147/28 147/3 639/301/119/997 639/925/357/997 Air temperature Atomic force microscopy Carbon dioxide Circular dichroism Cobalt Cobalt oxides Crystals Curie temperature Dichroism Ferromagnetic materials Graphene Humanities and Social Sciences Kerr magnetooptical effect Low temperature Magnetic materials magnetic properties and materials Magnetism MATERIALS SCIENCE Microscopy multidisciplinary Oxides Room temperature Science Science (multidisciplinary) Superconducting quantum interference devices Transmission electron microscopy Zinc oxide Zinc oxides |
title | Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20room-temperature%20ferromagnetism%20in%20Co-doped%20two-dimensional%20van%20der%20Waals%20ZnO&rft.jtitle=Nature%20communications&rft.au=Chen,%20Rui&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-06-25&rft.volume=12&rft.issue=1&rft.spage=3952&rft.epage=3952&rft.pages=3952-3952&rft.artnum=3952&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24247-w&rft_dat=%3Cproquest_doaj_%3E2544988319%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-c0124dc4abc59fb9246bb766f350d72a21090ca144f7482f03d3a179f530537e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544988319&rft_id=info:pmid/34172740&rfr_iscdi=true |