Loading…
Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells
Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better hum...
Saved in:
Published in: | Nano-micro letters 2023-12, Vol.15 (1), p.175-175, Article 175 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3 |
container_end_page | 175 |
container_issue | 1 |
container_start_page | 175 |
container_title | Nano-micro letters |
container_volume | 15 |
creator | Zhang, Ying Zhou, Chenxiao Lin, Lizhi Pei, Fengtao Xiao, Mengqi Yang, Xiaoyan Yuan, Guizhou Zhu, Cheng Chen, Yu Chen, Qi |
description | Highlights
The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD.
The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells.
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability. |
doi_str_mv | 10.1007/s40820-023-01145-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37</doaj_id><sourcerecordid>2836296959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEurxvzgnhFbQrrRSkVrOlmNPti7ZeLG9lfLtcZtSKAdOtua9-dljv6p6C-QjENKeJU4UJQ2hrCEAXDTzi-qYgiCNEAJelj0DaGRL5FF1mpLviaC8pa3gr6sj1nKqKBfH1dU5jib7MNVhqC_CiPV1NFPah5jrjZkx1jnU690-hjus8w3WV9n0fvR5vm_4hqWefvhc6mE0sV7hOKY31avBjAlPH9eT6vvXL9eri2Zzeb5efd40VgLNzSAtSmVB2kG4TgqEnlmw0inuWmeMGhx0QrmiSC6UGZjjgJ3kwK1wrWUn1XrhumBu9T76nYmzDsbrh0KIW21i9nZE3Q-KWWKYlExwTnpFQRFLOoFFcawtrE8La3_od-gsTjma8Rn0uTL5G70NdxoIYwykKIQPj4QYfh4wZb3zyZb3MBOGQ9JUMUk72YmuWN__Y70NhziVtyouVWbmRJLioovLxpBSxOHpNkD0fQb0kgFdMqAfMqDn0vTu7zmeWn7_eDGwxZCKNG0x_jn7P9hfU8m8zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889584060</pqid></control><display><type>article</type><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</creator><creatorcontrib>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</creatorcontrib><description>Highlights
The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD.
The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells.
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-023-01145-y</identifier><identifier>PMID: 37428245</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Aggregation of LiTFSI ; Carrier transport ; Charge transfer ; Crystal defects ; Crystallization ; Current carriers ; Energy conversion efficiency ; Engineering ; Gelation ; Hole transport layer ; Humidity stability ; Lipoic acid ; Lithium ; Lithium compounds ; Moisture ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Optoelectronic devices ; Oxygen ; Perovskite solar cell ; Perovskites ; Photovoltaic cells ; Service life assessment ; Solar cells ; Stability ; Trifluoromethane</subject><ispartof>Nano-micro letters, 2023-12, Vol.15 (1), p.175-175, Article 175</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</citedby><cites>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2889584060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37428245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhou, Chenxiao</creatorcontrib><creatorcontrib>Lin, Lizhi</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Yang, Xiaoyan</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights
The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD.
The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells.
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</description><subject>Aggregation of LiTFSI</subject><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Gelation</subject><subject>Hole transport layer</subject><subject>Humidity stability</subject><subject>Lipoic acid</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Moisture</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optoelectronic devices</subject><subject>Oxygen</subject><subject>Perovskite solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Service life assessment</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Trifluoromethane</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEurxvzgnhFbQrrRSkVrOlmNPti7ZeLG9lfLtcZtSKAdOtua9-dljv6p6C-QjENKeJU4UJQ2hrCEAXDTzi-qYgiCNEAJelj0DaGRL5FF1mpLviaC8pa3gr6sj1nKqKBfH1dU5jib7MNVhqC_CiPV1NFPah5jrjZkx1jnU690-hjus8w3WV9n0fvR5vm_4hqWefvhc6mE0sV7hOKY31avBjAlPH9eT6vvXL9eri2Zzeb5efd40VgLNzSAtSmVB2kG4TgqEnlmw0inuWmeMGhx0QrmiSC6UGZjjgJ3kwK1wrWUn1XrhumBu9T76nYmzDsbrh0KIW21i9nZE3Q-KWWKYlExwTnpFQRFLOoFFcawtrE8La3_od-gsTjma8Rn0uTL5G70NdxoIYwykKIQPj4QYfh4wZb3zyZb3MBOGQ9JUMUk72YmuWN__Y70NhziVtyouVWbmRJLioovLxpBSxOHpNkD0fQb0kgFdMqAfMqDn0vTu7zmeWn7_eDGwxZCKNG0x_jn7P9hfU8m8zg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Ying</creator><creator>Zhou, Chenxiao</creator><creator>Lin, Lizhi</creator><creator>Pei, Fengtao</creator><creator>Xiao, Mengqi</creator><creator>Yang, Xiaoyan</creator><creator>Yuan, Guizhou</creator><creator>Zhu, Cheng</creator><creator>Chen, Yu</creator><creator>Chen, Qi</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231201</creationdate><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><author>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation of LiTFSI</topic><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Gelation</topic><topic>Hole transport layer</topic><topic>Humidity stability</topic><topic>Lipoic acid</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Moisture</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optoelectronic devices</topic><topic>Oxygen</topic><topic>Perovskite solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Service life assessment</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Trifluoromethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhou, Chenxiao</creatorcontrib><creatorcontrib>Lin, Lizhi</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Yang, Xiaoyan</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Zhou, Chenxiao</au><au>Lin, Lizhi</au><au>Pei, Fengtao</au><au>Xiao, Mengqi</au><au>Yang, Xiaoyan</au><au>Yuan, Guizhou</au><au>Zhu, Cheng</au><au>Chen, Yu</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>175</spage><epage>175</epage><pages>175-175</pages><artnum>175</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights
The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD.
The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells.
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37428245</pmid><doi>10.1007/s40820-023-01145-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-micro letters, 2023-12, Vol.15 (1), p.175-175, Article 175 |
issn | 2311-6706 2150-5551 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37 |
source | PubMed Central (Open Access); Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Aggregation of LiTFSI Carrier transport Charge transfer Crystal defects Crystallization Current carriers Energy conversion efficiency Engineering Gelation Hole transport layer Humidity stability Lipoic acid Lithium Lithium compounds Moisture Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optoelectronic devices Oxygen Perovskite solar cell Perovskites Photovoltaic cells Service life assessment Solar cells Stability Trifluoromethane |
title | Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelation%20of%20Hole%20Transport%20Layer%20to%20Improve%20the%20Stability%20of%20Perovskite%20Solar%20Cells&rft.jtitle=Nano-micro%20letters&rft.au=Zhang,%20Ying&rft.date=2023-12-01&rft.volume=15&rft.issue=1&rft.spage=175&rft.epage=175&rft.pages=175-175&rft.artnum=175&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-023-01145-y&rft_dat=%3Cproquest_doaj_%3E2836296959%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889584060&rft_id=info:pmid/37428245&rfr_iscdi=true |