Loading…

Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells

Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better hum...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2023-12, Vol.15 (1), p.175-175, Article 175
Main Authors: Zhang, Ying, Zhou, Chenxiao, Lin, Lizhi, Pei, Fengtao, Xiao, Mengqi, Yang, Xiaoyan, Yuan, Guizhou, Zhu, Cheng, Chen, Yu, Chen, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3
cites cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3
container_end_page 175
container_issue 1
container_start_page 175
container_title Nano-micro letters
container_volume 15
creator Zhang, Ying
Zhou, Chenxiao
Lin, Lizhi
Pei, Fengtao
Xiao, Mengqi
Yang, Xiaoyan
Yuan, Guizhou
Zhu, Cheng
Chen, Yu
Chen, Qi
description Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells. To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.
doi_str_mv 10.1007/s40820-023-01145-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37</doaj_id><sourcerecordid>2836296959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEurxvzgnhFbQrrRSkVrOlmNPti7ZeLG9lfLtcZtSKAdOtua9-dljv6p6C-QjENKeJU4UJQ2hrCEAXDTzi-qYgiCNEAJelj0DaGRL5FF1mpLviaC8pa3gr6sj1nKqKBfH1dU5jib7MNVhqC_CiPV1NFPah5jrjZkx1jnU690-hjus8w3WV9n0fvR5vm_4hqWefvhc6mE0sV7hOKY31avBjAlPH9eT6vvXL9eri2Zzeb5efd40VgLNzSAtSmVB2kG4TgqEnlmw0inuWmeMGhx0QrmiSC6UGZjjgJ3kwK1wrWUn1XrhumBu9T76nYmzDsbrh0KIW21i9nZE3Q-KWWKYlExwTnpFQRFLOoFFcawtrE8La3_od-gsTjma8Rn0uTL5G70NdxoIYwykKIQPj4QYfh4wZb3zyZb3MBOGQ9JUMUk72YmuWN__Y70NhziVtyouVWbmRJLioovLxpBSxOHpNkD0fQb0kgFdMqAfMqDn0vTu7zmeWn7_eDGwxZCKNG0x_jn7P9hfU8m8zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889584060</pqid></control><display><type>article</type><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</creator><creatorcontrib>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</creatorcontrib><description>Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells. To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-023-01145-y</identifier><identifier>PMID: 37428245</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Aggregation of LiTFSI ; Carrier transport ; Charge transfer ; Crystal defects ; Crystallization ; Current carriers ; Energy conversion efficiency ; Engineering ; Gelation ; Hole transport layer ; Humidity stability ; Lipoic acid ; Lithium ; Lithium compounds ; Moisture ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Optoelectronic devices ; Oxygen ; Perovskite solar cell ; Perovskites ; Photovoltaic cells ; Service life assessment ; Solar cells ; Stability ; Trifluoromethane</subject><ispartof>Nano-micro letters, 2023-12, Vol.15 (1), p.175-175, Article 175</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</citedby><cites>FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2889584060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37428245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhou, Chenxiao</creatorcontrib><creatorcontrib>Lin, Lizhi</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Yang, Xiaoyan</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells. To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</description><subject>Aggregation of LiTFSI</subject><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Gelation</subject><subject>Hole transport layer</subject><subject>Humidity stability</subject><subject>Lipoic acid</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Moisture</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optoelectronic devices</subject><subject>Oxygen</subject><subject>Perovskite solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Service life assessment</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Trifluoromethane</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEurxvzgnhFbQrrRSkVrOlmNPti7ZeLG9lfLtcZtSKAdOtua9-dljv6p6C-QjENKeJU4UJQ2hrCEAXDTzi-qYgiCNEAJelj0DaGRL5FF1mpLviaC8pa3gr6sj1nKqKBfH1dU5jib7MNVhqC_CiPV1NFPah5jrjZkx1jnU690-hjus8w3WV9n0fvR5vm_4hqWefvhc6mE0sV7hOKY31avBjAlPH9eT6vvXL9eri2Zzeb5efd40VgLNzSAtSmVB2kG4TgqEnlmw0inuWmeMGhx0QrmiSC6UGZjjgJ3kwK1wrWUn1XrhumBu9T76nYmzDsbrh0KIW21i9nZE3Q-KWWKYlExwTnpFQRFLOoFFcawtrE8La3_od-gsTjma8Rn0uTL5G70NdxoIYwykKIQPj4QYfh4wZb3zyZb3MBOGQ9JUMUk72YmuWN__Y70NhziVtyouVWbmRJLioovLxpBSxOHpNkD0fQb0kgFdMqAfMqDn0vTu7zmeWn7_eDGwxZCKNG0x_jn7P9hfU8m8zg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Ying</creator><creator>Zhou, Chenxiao</creator><creator>Lin, Lizhi</creator><creator>Pei, Fengtao</creator><creator>Xiao, Mengqi</creator><creator>Yang, Xiaoyan</creator><creator>Yuan, Guizhou</creator><creator>Zhu, Cheng</creator><creator>Chen, Yu</creator><creator>Chen, Qi</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231201</creationdate><title>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</title><author>Zhang, Ying ; Zhou, Chenxiao ; Lin, Lizhi ; Pei, Fengtao ; Xiao, Mengqi ; Yang, Xiaoyan ; Yuan, Guizhou ; Zhu, Cheng ; Chen, Yu ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation of LiTFSI</topic><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Gelation</topic><topic>Hole transport layer</topic><topic>Humidity stability</topic><topic>Lipoic acid</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Moisture</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optoelectronic devices</topic><topic>Oxygen</topic><topic>Perovskite solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Service life assessment</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Trifluoromethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhou, Chenxiao</creatorcontrib><creatorcontrib>Lin, Lizhi</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Yang, Xiaoyan</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Zhou, Chenxiao</au><au>Lin, Lizhi</au><au>Pei, Fengtao</au><au>Xiao, Mengqi</au><au>Yang, Xiaoyan</au><au>Yuan, Guizhou</au><au>Zhu, Cheng</au><au>Chen, Yu</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>175</spage><epage>175</epage><pages>175-175</pages><artnum>175</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD. The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells. To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37428245</pmid><doi>10.1007/s40820-023-01145-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2023-12, Vol.15 (1), p.175-175, Article 175
issn 2311-6706
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bf83c0a36635440b82180c095ebf8d37
source PubMed Central (Open Access); Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Aggregation of LiTFSI
Carrier transport
Charge transfer
Crystal defects
Crystallization
Current carriers
Energy conversion efficiency
Engineering
Gelation
Hole transport layer
Humidity stability
Lipoic acid
Lithium
Lithium compounds
Moisture
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optoelectronic devices
Oxygen
Perovskite solar cell
Perovskites
Photovoltaic cells
Service life assessment
Solar cells
Stability
Trifluoromethane
title Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelation%20of%20Hole%20Transport%20Layer%20to%20Improve%20the%20Stability%20of%20Perovskite%20Solar%20Cells&rft.jtitle=Nano-micro%20letters&rft.au=Zhang,%20Ying&rft.date=2023-12-01&rft.volume=15&rft.issue=1&rft.spage=175&rft.epage=175&rft.pages=175-175&rft.artnum=175&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-023-01145-y&rft_dat=%3Cproquest_doaj_%3E2836296959%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-f6ce68c16cf5d965e1b3c1c6d84d7daa8fd1958d65e6458af3d41e96414c5d7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889584060&rft_id=info:pmid/37428245&rfr_iscdi=true