Loading…
Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control
Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spin...
Saved in:
Published in: | Physical review. X 2022-08, Vol.12 (3), p.031028, Article 031028 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3 |
container_end_page | |
container_issue | 3 |
container_start_page | 031028 |
container_title | Physical review. X |
container_volume | 12 |
creator | Bayliss, S. L. Deb, P. Laorenza, D. W. Onizhuk, M. Galli, G. Freedman, D. E. Awschalom, D. D. |
description | Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments. |
doi_str_mv | 10.1103/PhysRevX.12.031028 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24</doaj_id><sourcerecordid>2731133307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhSNEJaq2f4BTBOcsntiJ7WO1KrRSq9IWJE5YtjPeeBXixXYQ--8xDSDmMuPRp6d5flX1GsgGgNB3H8djesQfXzbQbggF0ooX1WkLPWkoJeLlf_Or6iKlPSnVE2Ccn1Zfr-ZRz9bPu_rp4Od6G0aMOFusy-P-kL3V03SsL4chYkraTFjfhQntMulYPyzG51TnMYZlN9bXIeXmTufofxadOccwnVcnTk8JL_70s-rz-6tP2-vm9v7DzfbytrGsh9wgDgMZDGfgOkkkcNp1BEAbLqSmEpECto5aZqVAKajpuGFci05SJsA6elbdrLpD0Ht1iP6bjkcVtFfPixB3SsdiZkJlnERhHbGmpcwxZ_pukAOzPRjrdMuK1ptVq9jxKlmf0Y42zDParECIgnQFertChxi-L5iy2oclzsWjajkFoOW7eaHalbIxpBTR_TsNiPqdnfqbnYJWrdnRXygNjiI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731133307</pqid></control><display><type>article</type><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><source>Publicly Available Content Database</source><creator>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D.</creator><creatorcontrib>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D. ; Univ. of Chicago, IL (United States) ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.12.031028</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; Background noise ; Coherence ; Electron spin ; Electrons ; First principles ; Information science ; Mechanical properties ; Molecular structure ; Noise generation ; Noise sensitivity ; Nuclei (nuclear physics) ; Optical activity ; Quantum phenomena ; Qubits (quantum computing) ; Relaxation time ; Remote control ; Remote sensing ; Spin-lattice relaxation ; Splitting ; Versatility</subject><ispartof>Physical review. X, 2022-08, Vol.12 (3), p.031028, Article 031028</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</citedby><cites>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</cites><orcidid>0000-0002-8591-2687 ; 0000-0003-1566-6932 ; 0000-0002-1156-7243 ; 0000-0002-2579-8835 ; 0000-0001-6269-9054 ; 0000-0003-0434-4575 ; 0000-0002-8001-5290 ; 0000000285912687 ; 0000000280015290 ; 0000000315666932 ; 0000000304344575 ; 0000000211567243 ; 0000000162699054 ; 0000000225798835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2731133307?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1882435$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayliss, S. L.</creatorcontrib><creatorcontrib>Deb, P.</creatorcontrib><creatorcontrib>Laorenza, D. W.</creatorcontrib><creatorcontrib>Onizhuk, M.</creatorcontrib><creatorcontrib>Galli, G.</creatorcontrib><creatorcontrib>Freedman, D. E.</creatorcontrib><creatorcontrib>Awschalom, D. D.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><title>Physical review. X</title><description>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Background noise</subject><subject>Coherence</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>First principles</subject><subject>Information science</subject><subject>Mechanical properties</subject><subject>Molecular structure</subject><subject>Noise generation</subject><subject>Noise sensitivity</subject><subject>Nuclei (nuclear physics)</subject><subject>Optical activity</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Relaxation time</subject><subject>Remote control</subject><subject>Remote sensing</subject><subject>Spin-lattice relaxation</subject><subject>Splitting</subject><subject>Versatility</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv1DAQhSNEJaq2f4BTBOcsntiJ7WO1KrRSq9IWJE5YtjPeeBXixXYQ--8xDSDmMuPRp6d5flX1GsgGgNB3H8djesQfXzbQbggF0ooX1WkLPWkoJeLlf_Or6iKlPSnVE2Ccn1Zfr-ZRz9bPu_rp4Od6G0aMOFusy-P-kL3V03SsL4chYkraTFjfhQntMulYPyzG51TnMYZlN9bXIeXmTufofxadOccwnVcnTk8JL_70s-rz-6tP2-vm9v7DzfbytrGsh9wgDgMZDGfgOkkkcNp1BEAbLqSmEpECto5aZqVAKajpuGFci05SJsA6elbdrLpD0Ht1iP6bjkcVtFfPixB3SsdiZkJlnERhHbGmpcwxZ_pukAOzPRjrdMuK1ptVq9jxKlmf0Y42zDParECIgnQFertChxi-L5iy2oclzsWjajkFoOW7eaHalbIxpBTR_TsNiPqdnfqbnYJWrdnRXygNjiI</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Bayliss, S. L.</creator><creator>Deb, P.</creator><creator>Laorenza, D. W.</creator><creator>Onizhuk, M.</creator><creator>Galli, G.</creator><creator>Freedman, D. E.</creator><creator>Awschalom, D. D.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000-0003-1566-6932</orcidid><orcidid>https://orcid.org/0000-0002-1156-7243</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0001-6269-9054</orcidid><orcidid>https://orcid.org/0000-0003-0434-4575</orcidid><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><orcidid>https://orcid.org/0000000315666932</orcidid><orcidid>https://orcid.org/0000000304344575</orcidid><orcidid>https://orcid.org/0000000211567243</orcidid><orcidid>https://orcid.org/0000000162699054</orcidid><orcidid>https://orcid.org/0000000225798835</orcidid></search><sort><creationdate>20220818</creationdate><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><author>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Background noise</topic><topic>Coherence</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>First principles</topic><topic>Information science</topic><topic>Mechanical properties</topic><topic>Molecular structure</topic><topic>Noise generation</topic><topic>Noise sensitivity</topic><topic>Nuclei (nuclear physics)</topic><topic>Optical activity</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Relaxation time</topic><topic>Remote control</topic><topic>Remote sensing</topic><topic>Spin-lattice relaxation</topic><topic>Splitting</topic><topic>Versatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayliss, S. L.</creatorcontrib><creatorcontrib>Deb, P.</creatorcontrib><creatorcontrib>Laorenza, D. W.</creatorcontrib><creatorcontrib>Onizhuk, M.</creatorcontrib><creatorcontrib>Galli, G.</creatorcontrib><creatorcontrib>Freedman, D. E.</creatorcontrib><creatorcontrib>Awschalom, D. D.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayliss, S. L.</au><au>Deb, P.</au><au>Laorenza, D. W.</au><au>Onizhuk, M.</au><au>Galli, G.</au><au>Freedman, D. E.</au><au>Awschalom, D. D.</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</atitle><jtitle>Physical review. X</jtitle><date>2022-08-18</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>031028</spage><pages>031028-</pages><artnum>031028</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.12.031028</doi><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000-0003-1566-6932</orcidid><orcidid>https://orcid.org/0000-0002-1156-7243</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0001-6269-9054</orcidid><orcidid>https://orcid.org/0000-0003-0434-4575</orcidid><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><orcidid>https://orcid.org/0000000315666932</orcidid><orcidid>https://orcid.org/0000000304344575</orcidid><orcidid>https://orcid.org/0000000211567243</orcidid><orcidid>https://orcid.org/0000000162699054</orcidid><orcidid>https://orcid.org/0000000225798835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2022-08, Vol.12 (3), p.031028, Article 031028 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24 |
source | Publicly Available Content Database |
subjects | ATOMIC AND MOLECULAR PHYSICS Background noise Coherence Electron spin Electrons First principles Information science Mechanical properties Molecular structure Noise generation Noise sensitivity Nuclei (nuclear physics) Optical activity Quantum phenomena Qubits (quantum computing) Relaxation time Remote control Remote sensing Spin-lattice relaxation Splitting Versatility |
title | Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Spin%20Coherence%20in%20Optically%20Addressable%20Molecular%20Qubits%20through%20Host-Matrix%20Control&rft.jtitle=Physical%20review.%20X&rft.au=Bayliss,%20S.%E2%80%89L.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2022-08-18&rft.volume=12&rft.issue=3&rft.spage=031028&rft.pages=031028-&rft.artnum=031028&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.12.031028&rft_dat=%3Cproquest_doaj_%3E2731133307%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731133307&rft_id=info:pmid/&rfr_iscdi=true |