Loading…

Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control

Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spin...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2022-08, Vol.12 (3), p.031028, Article 031028
Main Authors: Bayliss, S. L., Deb, P., Laorenza, D. W., Onizhuk, M., Galli, G., Freedman, D. E., Awschalom, D. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3
cites cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3
container_end_page
container_issue 3
container_start_page 031028
container_title Physical review. X
container_volume 12
creator Bayliss, S. L.
Deb, P.
Laorenza, D. W.
Onizhuk, M.
Galli, G.
Freedman, D. E.
Awschalom, D. D.
description Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.
doi_str_mv 10.1103/PhysRevX.12.031028
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24</doaj_id><sourcerecordid>2731133307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhSNEJaq2f4BTBOcsntiJ7WO1KrRSq9IWJE5YtjPeeBXixXYQ--8xDSDmMuPRp6d5flX1GsgGgNB3H8djesQfXzbQbggF0ooX1WkLPWkoJeLlf_Or6iKlPSnVE2Ccn1Zfr-ZRz9bPu_rp4Od6G0aMOFusy-P-kL3V03SsL4chYkraTFjfhQntMulYPyzG51TnMYZlN9bXIeXmTufofxadOccwnVcnTk8JL_70s-rz-6tP2-vm9v7DzfbytrGsh9wgDgMZDGfgOkkkcNp1BEAbLqSmEpECto5aZqVAKajpuGFci05SJsA6elbdrLpD0Ht1iP6bjkcVtFfPixB3SsdiZkJlnERhHbGmpcwxZ_pukAOzPRjrdMuK1ptVq9jxKlmf0Y42zDParECIgnQFertChxi-L5iy2oclzsWjajkFoOW7eaHalbIxpBTR_TsNiPqdnfqbnYJWrdnRXygNjiI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731133307</pqid></control><display><type>article</type><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><source>Publicly Available Content Database</source><creator>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D.</creator><creatorcontrib>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D. ; Univ. of Chicago, IL (United States) ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.12.031028</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; Background noise ; Coherence ; Electron spin ; Electrons ; First principles ; Information science ; Mechanical properties ; Molecular structure ; Noise generation ; Noise sensitivity ; Nuclei (nuclear physics) ; Optical activity ; Quantum phenomena ; Qubits (quantum computing) ; Relaxation time ; Remote control ; Remote sensing ; Spin-lattice relaxation ; Splitting ; Versatility</subject><ispartof>Physical review. X, 2022-08, Vol.12 (3), p.031028, Article 031028</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</citedby><cites>FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</cites><orcidid>0000-0002-8591-2687 ; 0000-0003-1566-6932 ; 0000-0002-1156-7243 ; 0000-0002-2579-8835 ; 0000-0001-6269-9054 ; 0000-0003-0434-4575 ; 0000-0002-8001-5290 ; 0000000285912687 ; 0000000280015290 ; 0000000315666932 ; 0000000304344575 ; 0000000211567243 ; 0000000162699054 ; 0000000225798835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2731133307?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1882435$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayliss, S. L.</creatorcontrib><creatorcontrib>Deb, P.</creatorcontrib><creatorcontrib>Laorenza, D. W.</creatorcontrib><creatorcontrib>Onizhuk, M.</creatorcontrib><creatorcontrib>Galli, G.</creatorcontrib><creatorcontrib>Freedman, D. E.</creatorcontrib><creatorcontrib>Awschalom, D. D.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><title>Physical review. X</title><description>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Background noise</subject><subject>Coherence</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>First principles</subject><subject>Information science</subject><subject>Mechanical properties</subject><subject>Molecular structure</subject><subject>Noise generation</subject><subject>Noise sensitivity</subject><subject>Nuclei (nuclear physics)</subject><subject>Optical activity</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Relaxation time</subject><subject>Remote control</subject><subject>Remote sensing</subject><subject>Spin-lattice relaxation</subject><subject>Splitting</subject><subject>Versatility</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv1DAQhSNEJaq2f4BTBOcsntiJ7WO1KrRSq9IWJE5YtjPeeBXixXYQ--8xDSDmMuPRp6d5flX1GsgGgNB3H8djesQfXzbQbggF0ooX1WkLPWkoJeLlf_Or6iKlPSnVE2Ccn1Zfr-ZRz9bPu_rp4Od6G0aMOFusy-P-kL3V03SsL4chYkraTFjfhQntMulYPyzG51TnMYZlN9bXIeXmTufofxadOccwnVcnTk8JL_70s-rz-6tP2-vm9v7DzfbytrGsh9wgDgMZDGfgOkkkcNp1BEAbLqSmEpECto5aZqVAKajpuGFci05SJsA6elbdrLpD0Ht1iP6bjkcVtFfPixB3SsdiZkJlnERhHbGmpcwxZ_pukAOzPRjrdMuK1ptVq9jxKlmf0Y42zDParECIgnQFertChxi-L5iy2oclzsWjajkFoOW7eaHalbIxpBTR_TsNiPqdnfqbnYJWrdnRXygNjiI</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Bayliss, S. L.</creator><creator>Deb, P.</creator><creator>Laorenza, D. W.</creator><creator>Onizhuk, M.</creator><creator>Galli, G.</creator><creator>Freedman, D. E.</creator><creator>Awschalom, D. D.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000-0003-1566-6932</orcidid><orcidid>https://orcid.org/0000-0002-1156-7243</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0001-6269-9054</orcidid><orcidid>https://orcid.org/0000-0003-0434-4575</orcidid><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><orcidid>https://orcid.org/0000000315666932</orcidid><orcidid>https://orcid.org/0000000304344575</orcidid><orcidid>https://orcid.org/0000000211567243</orcidid><orcidid>https://orcid.org/0000000162699054</orcidid><orcidid>https://orcid.org/0000000225798835</orcidid></search><sort><creationdate>20220818</creationdate><title>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</title><author>Bayliss, S. L. ; Deb, P. ; Laorenza, D. W. ; Onizhuk, M. ; Galli, G. ; Freedman, D. E. ; Awschalom, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Background noise</topic><topic>Coherence</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>First principles</topic><topic>Information science</topic><topic>Mechanical properties</topic><topic>Molecular structure</topic><topic>Noise generation</topic><topic>Noise sensitivity</topic><topic>Nuclei (nuclear physics)</topic><topic>Optical activity</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Relaxation time</topic><topic>Remote control</topic><topic>Remote sensing</topic><topic>Spin-lattice relaxation</topic><topic>Splitting</topic><topic>Versatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayliss, S. L.</creatorcontrib><creatorcontrib>Deb, P.</creatorcontrib><creatorcontrib>Laorenza, D. W.</creatorcontrib><creatorcontrib>Onizhuk, M.</creatorcontrib><creatorcontrib>Galli, G.</creatorcontrib><creatorcontrib>Freedman, D. E.</creatorcontrib><creatorcontrib>Awschalom, D. D.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayliss, S. L.</au><au>Deb, P.</au><au>Laorenza, D. W.</au><au>Onizhuk, M.</au><au>Galli, G.</au><au>Freedman, D. E.</au><au>Awschalom, D. D.</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control</atitle><jtitle>Physical review. X</jtitle><date>2022-08-18</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>031028</spage><pages>031028-</pages><artnum>031028</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than10μsfor optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.12.031028</doi><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000-0003-1566-6932</orcidid><orcidid>https://orcid.org/0000-0002-1156-7243</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0001-6269-9054</orcidid><orcidid>https://orcid.org/0000-0003-0434-4575</orcidid><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><orcidid>https://orcid.org/0000000315666932</orcidid><orcidid>https://orcid.org/0000000304344575</orcidid><orcidid>https://orcid.org/0000000211567243</orcidid><orcidid>https://orcid.org/0000000162699054</orcidid><orcidid>https://orcid.org/0000000225798835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2022-08, Vol.12 (3), p.031028, Article 031028
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bf9e8cf0cb234f4fb65d9d4c61bcfa24
source Publicly Available Content Database
subjects ATOMIC AND MOLECULAR PHYSICS
Background noise
Coherence
Electron spin
Electrons
First principles
Information science
Mechanical properties
Molecular structure
Noise generation
Noise sensitivity
Nuclei (nuclear physics)
Optical activity
Quantum phenomena
Qubits (quantum computing)
Relaxation time
Remote control
Remote sensing
Spin-lattice relaxation
Splitting
Versatility
title Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Spin%20Coherence%20in%20Optically%20Addressable%20Molecular%20Qubits%20through%20Host-Matrix%20Control&rft.jtitle=Physical%20review.%20X&rft.au=Bayliss,%20S.%E2%80%89L.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2022-08-18&rft.volume=12&rft.issue=3&rft.spage=031028&rft.pages=031028-&rft.artnum=031028&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.12.031028&rft_dat=%3Cproquest_doaj_%3E2731133307%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-eedd0db741f590917355011ab789a39ee31e2f3c4c98e983b57b47a8593481cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731133307&rft_id=info:pmid/&rfr_iscdi=true