Loading…

Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves

High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks. Once the concrete block falling occurs, serious consequences follow, and traffic safety may be endangered. The aerodynamic shockwave evolves from the initial compression wave may be...

Full description

Saved in:
Bibliographic Details
Published in:Underground space (Beijing) 2024-10, Vol.18, p.199-217
Main Authors: Liu, Yi-Kang, Wang, Yu-Ling, Deng, E, Ni, Yi-Qing, Yang, Wei-Chao, Ao, Wai-Kei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-425485340f2b14bef58989601c17058fc7aa6e53a73d3218b75da3aed7067ed23
container_end_page 217
container_issue
container_start_page 199
container_title Underground space (Beijing)
container_volume 18
creator Liu, Yi-Kang
Wang, Yu-Ling
Deng, E
Ni, Yi-Qing
Yang, Wei-Chao
Ao, Wai-Kei
description High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks. Once the concrete block falling occurs, serious consequences follow, and traffic safety may be endangered. The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks. A joint calculation framework is established based on ANSYS Fluent, ABAQUS, and FRANC3D for calculating the crack tip field under the aerodynamic shockwave. The intensification effect of aerodynamic shockwaves in the crack is revealed, and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor (SIF) are analyzed. Results show that (1) the aerodynamic shockwave intensifies after entering the crack, resulting in more significant pressure in the crack than the input pressure. The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack, respectively. (2) The maximum SIF of the circumferential, inclined, and longitudinal crack appears at 0.5, 0.68, and 0.78 times the crack front length. The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack. The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves. (3) The influence of train speed on the SIF of the circumferential crack is more than 40%. When the train speed, crack depth, and crack length change, the change of pressure in the crack is the direct cause of the change of SIF.
doi_str_mv 10.1016/j.undsp.2024.01.001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bfa8d2be521447eda845c58206ac04ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S246796742400031X</els_id><doaj_id>oai_doaj_org_article_bfa8d2be521447eda845c58206ac04ed</doaj_id><sourcerecordid>3072015193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-425485340f2b14bef58989601c17058fc7aa6e53a73d3218b75da3aed7067ed23</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRBIVKW_gIslzgnjrzh74IBWQCtV4gJna2JPNk5TJ9jZrfbf43YR4sRpRuP33jzPq6r3HBoOvP04Ncfo89oIEKoB3gDwV9WVUK2pd61Rr__p31Y3OU8AIKAzndFX1Wk_YkK3UQp5Cy6zZWDbSMyV4QPbwsqGQLNnIbIxHMY6r0SeJQzzE57ZdoyRZjaHGOIhs-KDEtvKa6xD9EdXoEhp8eeIj8GxPC7u4QlPlN9VbwacM938qdfVz69ffuxv6_vv3-72n-9rJ4XYaiW06rRUMIieq54G3e26XQvccQO6G5xBbElLNNJLwbveaI8SyRtoDXkhr6u7i65fcLJrCo-YznbBYF8GSzpYTOXfM9l-wM6LnrTgShUydko73Qlo0YEiX7Q-XLTWtPw6Ut7stBxTLPatBCOAa76TBSUvKJeWnBMNf7dysM952cm-5GWf87LAbcmrsD5dWFSOcQqUbHaBYjlgSOS24jb8l_8bheugdQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072015193</pqid></control><display><type>article</type><title>Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves</title><source>Elsevier ScienceDirect Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Liu, Yi-Kang ; Wang, Yu-Ling ; Deng, E ; Ni, Yi-Qing ; Yang, Wei-Chao ; Ao, Wai-Kei</creator><creatorcontrib>Liu, Yi-Kang ; Wang, Yu-Ling ; Deng, E ; Ni, Yi-Qing ; Yang, Wei-Chao ; Ao, Wai-Kei</creatorcontrib><description>High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks. Once the concrete block falling occurs, serious consequences follow, and traffic safety may be endangered. The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks. A joint calculation framework is established based on ANSYS Fluent, ABAQUS, and FRANC3D for calculating the crack tip field under the aerodynamic shockwave. The intensification effect of aerodynamic shockwaves in the crack is revealed, and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor (SIF) are analyzed. Results show that (1) the aerodynamic shockwave intensifies after entering the crack, resulting in more significant pressure in the crack than the input pressure. The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack, respectively. (2) The maximum SIF of the circumferential, inclined, and longitudinal crack appears at 0.5, 0.68, and 0.78 times the crack front length. The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack. The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves. (3) The influence of train speed on the SIF of the circumferential crack is more than 40%. When the train speed, crack depth, and crack length change, the change of pressure in the crack is the direct cause of the change of SIF.</description><identifier>ISSN: 2467-9674</identifier><identifier>ISSN: 2096-2754</identifier><identifier>EISSN: 2467-9674</identifier><identifier>DOI: 10.1016/j.undsp.2024.01.001</identifier><language>eng</language><publisher>Shanghai: Elsevier B.V</publisher><subject>Aerodynamic shockwave ; Boundary conditions ; Circumferences ; Compression waves ; Concrete blocks ; Crack propagation ; Crack tip field ; Crack tips ; Falling ; Falling concrete blocks ; High speed rail ; Influence ; Intensification effect ; Longitudinal waves ; Propagation ; Railway engineering ; Railway tunnels ; Shock waves ; Stress concentration ; Stress intensity factor ; Stress intensity factors ; Trains ; Tunnel lining cracks ; Tunnel linings ; Velocity</subject><ispartof>Underground space (Beijing), 2024-10, Vol.18, p.199-217</ispartof><rights>2024 Tongji University</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-425485340f2b14bef58989601c17058fc7aa6e53a73d3218b75da3aed7067ed23</cites><orcidid>0000-0002-0051-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3072015193?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,25753,27924,27925,37012,44590,45780</link.rule.ids></links><search><creatorcontrib>Liu, Yi-Kang</creatorcontrib><creatorcontrib>Wang, Yu-Ling</creatorcontrib><creatorcontrib>Deng, E</creatorcontrib><creatorcontrib>Ni, Yi-Qing</creatorcontrib><creatorcontrib>Yang, Wei-Chao</creatorcontrib><creatorcontrib>Ao, Wai-Kei</creatorcontrib><title>Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves</title><title>Underground space (Beijing)</title><description>High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks. Once the concrete block falling occurs, serious consequences follow, and traffic safety may be endangered. The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks. A joint calculation framework is established based on ANSYS Fluent, ABAQUS, and FRANC3D for calculating the crack tip field under the aerodynamic shockwave. The intensification effect of aerodynamic shockwaves in the crack is revealed, and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor (SIF) are analyzed. Results show that (1) the aerodynamic shockwave intensifies after entering the crack, resulting in more significant pressure in the crack than the input pressure. The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack, respectively. (2) The maximum SIF of the circumferential, inclined, and longitudinal crack appears at 0.5, 0.68, and 0.78 times the crack front length. The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack. The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves. (3) The influence of train speed on the SIF of the circumferential crack is more than 40%. When the train speed, crack depth, and crack length change, the change of pressure in the crack is the direct cause of the change of SIF.</description><subject>Aerodynamic shockwave</subject><subject>Boundary conditions</subject><subject>Circumferences</subject><subject>Compression waves</subject><subject>Concrete blocks</subject><subject>Crack propagation</subject><subject>Crack tip field</subject><subject>Crack tips</subject><subject>Falling</subject><subject>Falling concrete blocks</subject><subject>High speed rail</subject><subject>Influence</subject><subject>Intensification effect</subject><subject>Longitudinal waves</subject><subject>Propagation</subject><subject>Railway engineering</subject><subject>Railway tunnels</subject><subject>Shock waves</subject><subject>Stress concentration</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><subject>Trains</subject><subject>Tunnel lining cracks</subject><subject>Tunnel linings</subject><subject>Velocity</subject><issn>2467-9674</issn><issn>2096-2754</issn><issn>2467-9674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQjRBIVKW_gIslzgnjrzh74IBWQCtV4gJna2JPNk5TJ9jZrfbf43YR4sRpRuP33jzPq6r3HBoOvP04Ncfo89oIEKoB3gDwV9WVUK2pd61Rr__p31Y3OU8AIKAzndFX1Wk_YkK3UQp5Cy6zZWDbSMyV4QPbwsqGQLNnIbIxHMY6r0SeJQzzE57ZdoyRZjaHGOIhs-KDEtvKa6xD9EdXoEhp8eeIj8GxPC7u4QlPlN9VbwacM938qdfVz69ffuxv6_vv3-72n-9rJ4XYaiW06rRUMIieq54G3e26XQvccQO6G5xBbElLNNJLwbveaI8SyRtoDXkhr6u7i65fcLJrCo-YznbBYF8GSzpYTOXfM9l-wM6LnrTgShUydko73Qlo0YEiX7Q-XLTWtPw6Ut7stBxTLPatBCOAa76TBSUvKJeWnBMNf7dysM952cm-5GWf87LAbcmrsD5dWFSOcQqUbHaBYjlgSOS24jb8l_8bheugdQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liu, Yi-Kang</creator><creator>Wang, Yu-Ling</creator><creator>Deng, E</creator><creator>Ni, Yi-Qing</creator><creator>Yang, Wei-Chao</creator><creator>Ao, Wai-Kei</creator><general>Elsevier B.V</general><general>KeAi Publishing Communications Ltd</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0051-308X</orcidid></search><sort><creationdate>20241001</creationdate><title>Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves</title><author>Liu, Yi-Kang ; Wang, Yu-Ling ; Deng, E ; Ni, Yi-Qing ; Yang, Wei-Chao ; Ao, Wai-Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-425485340f2b14bef58989601c17058fc7aa6e53a73d3218b75da3aed7067ed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic shockwave</topic><topic>Boundary conditions</topic><topic>Circumferences</topic><topic>Compression waves</topic><topic>Concrete blocks</topic><topic>Crack propagation</topic><topic>Crack tip field</topic><topic>Crack tips</topic><topic>Falling</topic><topic>Falling concrete blocks</topic><topic>High speed rail</topic><topic>Influence</topic><topic>Intensification effect</topic><topic>Longitudinal waves</topic><topic>Propagation</topic><topic>Railway engineering</topic><topic>Railway tunnels</topic><topic>Shock waves</topic><topic>Stress concentration</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><topic>Trains</topic><topic>Tunnel lining cracks</topic><topic>Tunnel linings</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Kang</creatorcontrib><creatorcontrib>Wang, Yu-Ling</creatorcontrib><creatorcontrib>Deng, E</creatorcontrib><creatorcontrib>Ni, Yi-Qing</creatorcontrib><creatorcontrib>Yang, Wei-Chao</creatorcontrib><creatorcontrib>Ao, Wai-Kei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Underground space (Beijing)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi-Kang</au><au>Wang, Yu-Ling</au><au>Deng, E</au><au>Ni, Yi-Qing</au><au>Yang, Wei-Chao</au><au>Ao, Wai-Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves</atitle><jtitle>Underground space (Beijing)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>18</volume><spage>199</spage><epage>217</epage><pages>199-217</pages><issn>2467-9674</issn><issn>2096-2754</issn><eissn>2467-9674</eissn><abstract>High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks. Once the concrete block falling occurs, serious consequences follow, and traffic safety may be endangered. The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks. A joint calculation framework is established based on ANSYS Fluent, ABAQUS, and FRANC3D for calculating the crack tip field under the aerodynamic shockwave. The intensification effect of aerodynamic shockwaves in the crack is revealed, and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor (SIF) are analyzed. Results show that (1) the aerodynamic shockwave intensifies after entering the crack, resulting in more significant pressure in the crack than the input pressure. The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack, respectively. (2) The maximum SIF of the circumferential, inclined, and longitudinal crack appears at 0.5, 0.68, and 0.78 times the crack front length. The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack. The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves. (3) The influence of train speed on the SIF of the circumferential crack is more than 40%. When the train speed, crack depth, and crack length change, the change of pressure in the crack is the direct cause of the change of SIF.</abstract><cop>Shanghai</cop><pub>Elsevier B.V</pub><doi>10.1016/j.undsp.2024.01.001</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0051-308X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2467-9674
ispartof Underground space (Beijing), 2024-10, Vol.18, p.199-217
issn 2467-9674
2096-2754
2467-9674
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bfa8d2be521447eda845c58206ac04ed
source Elsevier ScienceDirect Journals; Publicly Available Content (ProQuest)
subjects Aerodynamic shockwave
Boundary conditions
Circumferences
Compression waves
Concrete blocks
Crack propagation
Crack tip field
Crack tips
Falling
Falling concrete blocks
High speed rail
Influence
Intensification effect
Longitudinal waves
Propagation
Railway engineering
Railway tunnels
Shock waves
Stress concentration
Stress intensity factor
Stress intensity factors
Trains
Tunnel lining cracks
Tunnel linings
Velocity
title Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20the%20crack%20tip%20field%20in%20high-speed%20railway%20tunnel%20linings%20under%20train-induced%20aerodynamic%20shockwaves&rft.jtitle=Underground%20space%20(Beijing)&rft.au=Liu,%20Yi-Kang&rft.date=2024-10-01&rft.volume=18&rft.spage=199&rft.epage=217&rft.pages=199-217&rft.issn=2467-9674&rft.eissn=2467-9674&rft_id=info:doi/10.1016/j.undsp.2024.01.001&rft_dat=%3Cproquest_doaj_%3E3072015193%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-425485340f2b14bef58989601c17058fc7aa6e53a73d3218b75da3aed7067ed23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072015193&rft_id=info:pmid/&rfr_iscdi=true