Loading…
EEG-based action anticipation in human-robot interaction: a comparative pilot study
As robots become integral to various sectors, improving human-robot collaboration is crucial, particularly in anticipating human actions to enhance safety and efficiency. Electroencephalographic (EEG) signals offer a promising solution, as they can detect brain activity preceding movement by over a...
Saved in:
Published in: | Frontiers in neurorobotics 2024-12, Vol.18, p.1491721 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As robots become integral to various sectors, improving human-robot collaboration is crucial, particularly in anticipating human actions to enhance safety and efficiency. Electroencephalographic (EEG) signals offer a promising solution, as they can detect brain activity preceding movement by over a second, enabling predictive capabilities in robots. This study explores how EEG can be used for action anticipation in human-robot interaction (HRI), leveraging its high temporal resolution and modern deep learning techniques. We evaluated multiple Deep Learning classification models on a motor imagery (MI) dataset, achieving up to 80.90% accuracy. These results were further validated in a pilot experiment, where actions were accurately predicted several hundred milliseconds before execution. This research demonstrates the potential of combining EEG with deep learning to enhance real-time collaborative tasks, paving the way for safer and more efficient human-robot interactions. |
---|---|
ISSN: | 1662-5218 1662-5218 |
DOI: | 10.3389/fnbot.2024.1491721 |