Loading…
Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear
The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease,...
Saved in:
Published in: | International journal of molecular sciences 2022-02, Vol.23 (4), p.2046 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83 |
container_end_page | |
container_issue | 4 |
container_start_page | 2046 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Hrdinova, Johana Fernández, Delia I Ercig, Bogac Tullemans, Bibian M E Suylen, Dennis P L Agten, Stijn M Jurk, Kerstin Hackeng, Tilman M Vanhoorelbeke, Karen Voorberg, Jan Reutelingsperger, Chris P M Wichapong, Kanin Heemskerk, Johan W M Nicolaes, Gerry A F |
description | The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1. |
doi_str_mv | 10.3390/ijms23042046 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30</doaj_id><sourcerecordid>2632973498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</originalsourceid><addsrcrecordid>eNpdkt1qFDEYhgdRbK2eeSwBTzzoaH5mMpMTYbvaulCwUMXDkJ9vZrPMJmuSWdn78Ea8Ea_JWbeWrQSS8OXJw5fwFsVLgt8yJvA7t1onynBFccUfFaekorTEmDePj_YnxbOUVhhTRmvxtDhhNSV8GqfFz9scR5PHCOWFSmDRfGcGZ9DVsDNhE0MG59FC__5VfoDothNwA5vsLCS08BliN1V9j364vETb4NE3Nwygo_IWXSqTQywvnLcTco5mXQcm7-mbQWUYIKNZ30foVXbTzdFbiOh2CSo-L550akjw4m49K75efvwy_1Ref75azGfXpamaNpc1IaTVlAqqGQgLioJQhqm2o5RUFdOCq5poYTnwhtYWd1oDrWrT1qphXcvOisXBa4NayU10axV3Mign_xZC7KWK2ZkBpO5s3dkWak1UZS0W06QE0Rw0ppbhyfX-4NqMeg3WgM9RDQ-kD0-8W8o-bGXbNpyzfTNv7gQxfB8hZbl2ycAwKA9hTJJyxlreHNDX_6GrMEY_fdWeoqJhldhT5wfKxJBShO6-GYLlPjryODoT_ur4Affwv6ywP071w34</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632973498</pqid></control><display><type>article</type><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</creator><creatorcontrib>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</creatorcontrib><description>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23042046</identifier><identifier>PMID: 35216161</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Antibodies ; Binding ; Binding Sites ; Blood clots ; Blood platelets ; Blood Platelets - metabolism ; Blood Platelets - physiology ; Cardiovascular diseases ; Cells, Cultured ; Chemical synthesis ; Collagen ; Design ; Domains ; Drugs ; Flow cytometry ; Free energy ; glycoprotein Ib ; Glycoproteins ; Horses ; Humans ; in silico peptide design ; Microfluidics ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex - chemistry ; platelets ; Protein Binding ; Shear rate ; Shear stress ; Stress, Mechanical ; Thrombosis ; thrombus ; Von Willebrand factor ; von Willebrand Factor - chemistry ; von Willebrand Factor - metabolism</subject><ispartof>International journal of molecular sciences, 2022-02, Vol.23 (4), p.2046</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</citedby><cites>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</cites><orcidid>0000-0003-0142-0843 ; 0000-0001-5313-4035 ; 0000-0001-6095-8972 ; 0000-0002-5055-9019 ; 0000-0002-9678-7084 ; 0000-0002-5973-272X ; 0000-0002-2334-9403 ; 0000-0002-2848-5121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632973498/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632973498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35216161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hrdinova, Johana</creatorcontrib><creatorcontrib>Fernández, Delia I</creatorcontrib><creatorcontrib>Ercig, Bogac</creatorcontrib><creatorcontrib>Tullemans, Bibian M E</creatorcontrib><creatorcontrib>Suylen, Dennis P L</creatorcontrib><creatorcontrib>Agten, Stijn M</creatorcontrib><creatorcontrib>Jurk, Kerstin</creatorcontrib><creatorcontrib>Hackeng, Tilman M</creatorcontrib><creatorcontrib>Vanhoorelbeke, Karen</creatorcontrib><creatorcontrib>Voorberg, Jan</creatorcontrib><creatorcontrib>Reutelingsperger, Chris P M</creatorcontrib><creatorcontrib>Wichapong, Kanin</creatorcontrib><creatorcontrib>Heemskerk, Johan W M</creatorcontrib><creatorcontrib>Nicolaes, Gerry A F</creatorcontrib><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Blood clots</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - physiology</subject><subject>Cardiovascular diseases</subject><subject>Cells, Cultured</subject><subject>Chemical synthesis</subject><subject>Collagen</subject><subject>Design</subject><subject>Domains</subject><subject>Drugs</subject><subject>Flow cytometry</subject><subject>Free energy</subject><subject>glycoprotein Ib</subject><subject>Glycoproteins</subject><subject>Horses</subject><subject>Humans</subject><subject>in silico peptide design</subject><subject>Microfluidics</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Platelet Aggregation</subject><subject>Platelet Glycoprotein GPIb-IX Complex - chemistry</subject><subject>platelets</subject><subject>Protein Binding</subject><subject>Shear rate</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Thrombosis</subject><subject>thrombus</subject><subject>Von Willebrand factor</subject><subject>von Willebrand Factor - chemistry</subject><subject>von Willebrand Factor - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEYhgdRbK2eeSwBTzzoaH5mMpMTYbvaulCwUMXDkJ9vZrPMJmuSWdn78Ea8Ea_JWbeWrQSS8OXJw5fwFsVLgt8yJvA7t1onynBFccUfFaekorTEmDePj_YnxbOUVhhTRmvxtDhhNSV8GqfFz9scR5PHCOWFSmDRfGcGZ9DVsDNhE0MG59FC__5VfoDothNwA5vsLCS08BliN1V9j364vETb4NE3Nwygo_IWXSqTQywvnLcTco5mXQcm7-mbQWUYIKNZ30foVXbTzdFbiOh2CSo-L550akjw4m49K75efvwy_1Ref75azGfXpamaNpc1IaTVlAqqGQgLioJQhqm2o5RUFdOCq5poYTnwhtYWd1oDrWrT1qphXcvOisXBa4NayU10axV3Mign_xZC7KWK2ZkBpO5s3dkWak1UZS0W06QE0Rw0ppbhyfX-4NqMeg3WgM9RDQ-kD0-8W8o-bGXbNpyzfTNv7gQxfB8hZbl2ycAwKA9hTJJyxlreHNDX_6GrMEY_fdWeoqJhldhT5wfKxJBShO6-GYLlPjryODoT_ur4Affwv6ywP071w34</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Hrdinova, Johana</creator><creator>Fernández, Delia I</creator><creator>Ercig, Bogac</creator><creator>Tullemans, Bibian M E</creator><creator>Suylen, Dennis P L</creator><creator>Agten, Stijn M</creator><creator>Jurk, Kerstin</creator><creator>Hackeng, Tilman M</creator><creator>Vanhoorelbeke, Karen</creator><creator>Voorberg, Jan</creator><creator>Reutelingsperger, Chris P M</creator><creator>Wichapong, Kanin</creator><creator>Heemskerk, Johan W M</creator><creator>Nicolaes, Gerry A F</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0142-0843</orcidid><orcidid>https://orcid.org/0000-0001-5313-4035</orcidid><orcidid>https://orcid.org/0000-0001-6095-8972</orcidid><orcidid>https://orcid.org/0000-0002-5055-9019</orcidid><orcidid>https://orcid.org/0000-0002-9678-7084</orcidid><orcidid>https://orcid.org/0000-0002-5973-272X</orcidid><orcidid>https://orcid.org/0000-0002-2334-9403</orcidid><orcidid>https://orcid.org/0000-0002-2848-5121</orcidid></search><sort><creationdate>20220212</creationdate><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><author>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Blood clots</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - physiology</topic><topic>Cardiovascular diseases</topic><topic>Cells, Cultured</topic><topic>Chemical synthesis</topic><topic>Collagen</topic><topic>Design</topic><topic>Domains</topic><topic>Drugs</topic><topic>Flow cytometry</topic><topic>Free energy</topic><topic>glycoprotein Ib</topic><topic>Glycoproteins</topic><topic>Horses</topic><topic>Humans</topic><topic>in silico peptide design</topic><topic>Microfluidics</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Platelet Aggregation</topic><topic>Platelet Glycoprotein GPIb-IX Complex - chemistry</topic><topic>platelets</topic><topic>Protein Binding</topic><topic>Shear rate</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Thrombosis</topic><topic>thrombus</topic><topic>Von Willebrand factor</topic><topic>von Willebrand Factor - chemistry</topic><topic>von Willebrand Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hrdinova, Johana</creatorcontrib><creatorcontrib>Fernández, Delia I</creatorcontrib><creatorcontrib>Ercig, Bogac</creatorcontrib><creatorcontrib>Tullemans, Bibian M E</creatorcontrib><creatorcontrib>Suylen, Dennis P L</creatorcontrib><creatorcontrib>Agten, Stijn M</creatorcontrib><creatorcontrib>Jurk, Kerstin</creatorcontrib><creatorcontrib>Hackeng, Tilman M</creatorcontrib><creatorcontrib>Vanhoorelbeke, Karen</creatorcontrib><creatorcontrib>Voorberg, Jan</creatorcontrib><creatorcontrib>Reutelingsperger, Chris P M</creatorcontrib><creatorcontrib>Wichapong, Kanin</creatorcontrib><creatorcontrib>Heemskerk, Johan W M</creatorcontrib><creatorcontrib>Nicolaes, Gerry A F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hrdinova, Johana</au><au>Fernández, Delia I</au><au>Ercig, Bogac</au><au>Tullemans, Bibian M E</au><au>Suylen, Dennis P L</au><au>Agten, Stijn M</au><au>Jurk, Kerstin</au><au>Hackeng, Tilman M</au><au>Vanhoorelbeke, Karen</au><au>Voorberg, Jan</au><au>Reutelingsperger, Chris P M</au><au>Wichapong, Kanin</au><au>Heemskerk, Johan W M</au><au>Nicolaes, Gerry A F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-02-12</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>2046</spage><pages>2046-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35216161</pmid><doi>10.3390/ijms23042046</doi><orcidid>https://orcid.org/0000-0003-0142-0843</orcidid><orcidid>https://orcid.org/0000-0001-5313-4035</orcidid><orcidid>https://orcid.org/0000-0001-6095-8972</orcidid><orcidid>https://orcid.org/0000-0002-5055-9019</orcidid><orcidid>https://orcid.org/0000-0002-9678-7084</orcidid><orcidid>https://orcid.org/0000-0002-5973-272X</orcidid><orcidid>https://orcid.org/0000-0002-2334-9403</orcidid><orcidid>https://orcid.org/0000-0002-2848-5121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-02, Vol.23 (4), p.2046 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Amino acids Animals Antibodies Binding Binding Sites Blood clots Blood platelets Blood Platelets - metabolism Blood Platelets - physiology Cardiovascular diseases Cells, Cultured Chemical synthesis Collagen Design Domains Drugs Flow cytometry Free energy glycoprotein Ib Glycoproteins Horses Humans in silico peptide design Microfluidics Peptides Peptides - chemistry Peptides - metabolism Platelet Aggregation Platelet Glycoprotein GPIb-IX Complex - chemistry platelets Protein Binding Shear rate Shear stress Stress, Mechanical Thrombosis thrombus Von Willebrand factor von Willebrand Factor - chemistry von Willebrand Factor - metabolism |
title | Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Based%20Cyclic%20Glycoprotein%20Ib%CE%B1-Derived%20Peptides%20Interfering%20with%20von%20Willebrand%20Factor-Binding,%20Affecting%20Platelet%20Aggregation%20under%20Shear&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hrdinova,%20Johana&rft.date=2022-02-12&rft.volume=23&rft.issue=4&rft.spage=2046&rft.pages=2046-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23042046&rft_dat=%3Cproquest_doaj_%3E2632973498%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632973498&rft_id=info:pmid/35216161&rfr_iscdi=true |