Loading…

Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-02, Vol.23 (4), p.2046
Main Authors: Hrdinova, Johana, Fernández, Delia I, Ercig, Bogac, Tullemans, Bibian M E, Suylen, Dennis P L, Agten, Stijn M, Jurk, Kerstin, Hackeng, Tilman M, Vanhoorelbeke, Karen, Voorberg, Jan, Reutelingsperger, Chris P M, Wichapong, Kanin, Heemskerk, Johan W M, Nicolaes, Gerry A F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83
cites cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83
container_end_page
container_issue 4
container_start_page 2046
container_title International journal of molecular sciences
container_volume 23
creator Hrdinova, Johana
Fernández, Delia I
Ercig, Bogac
Tullemans, Bibian M E
Suylen, Dennis P L
Agten, Stijn M
Jurk, Kerstin
Hackeng, Tilman M
Vanhoorelbeke, Karen
Voorberg, Jan
Reutelingsperger, Chris P M
Wichapong, Kanin
Heemskerk, Johan W M
Nicolaes, Gerry A F
description The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.
doi_str_mv 10.3390/ijms23042046
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30</doaj_id><sourcerecordid>2632973498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</originalsourceid><addsrcrecordid>eNpdkt1qFDEYhgdRbK2eeSwBTzzoaH5mMpMTYbvaulCwUMXDkJ9vZrPMJmuSWdn78Ea8Ea_JWbeWrQSS8OXJw5fwFsVLgt8yJvA7t1onynBFccUfFaekorTEmDePj_YnxbOUVhhTRmvxtDhhNSV8GqfFz9scR5PHCOWFSmDRfGcGZ9DVsDNhE0MG59FC__5VfoDothNwA5vsLCS08BliN1V9j364vETb4NE3Nwygo_IWXSqTQywvnLcTco5mXQcm7-mbQWUYIKNZ30foVXbTzdFbiOh2CSo-L550akjw4m49K75efvwy_1Ref75azGfXpamaNpc1IaTVlAqqGQgLioJQhqm2o5RUFdOCq5poYTnwhtYWd1oDrWrT1qphXcvOisXBa4NayU10axV3Mign_xZC7KWK2ZkBpO5s3dkWak1UZS0W06QE0Rw0ppbhyfX-4NqMeg3WgM9RDQ-kD0-8W8o-bGXbNpyzfTNv7gQxfB8hZbl2ycAwKA9hTJJyxlreHNDX_6GrMEY_fdWeoqJhldhT5wfKxJBShO6-GYLlPjryODoT_ur4Affwv6ywP071w34</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632973498</pqid></control><display><type>article</type><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</creator><creatorcontrib>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</creatorcontrib><description>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23042046</identifier><identifier>PMID: 35216161</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Antibodies ; Binding ; Binding Sites ; Blood clots ; Blood platelets ; Blood Platelets - metabolism ; Blood Platelets - physiology ; Cardiovascular diseases ; Cells, Cultured ; Chemical synthesis ; Collagen ; Design ; Domains ; Drugs ; Flow cytometry ; Free energy ; glycoprotein Ib ; Glycoproteins ; Horses ; Humans ; in silico peptide design ; Microfluidics ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex - chemistry ; platelets ; Protein Binding ; Shear rate ; Shear stress ; Stress, Mechanical ; Thrombosis ; thrombus ; Von Willebrand factor ; von Willebrand Factor - chemistry ; von Willebrand Factor - metabolism</subject><ispartof>International journal of molecular sciences, 2022-02, Vol.23 (4), p.2046</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</citedby><cites>FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</cites><orcidid>0000-0003-0142-0843 ; 0000-0001-5313-4035 ; 0000-0001-6095-8972 ; 0000-0002-5055-9019 ; 0000-0002-9678-7084 ; 0000-0002-5973-272X ; 0000-0002-2334-9403 ; 0000-0002-2848-5121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632973498/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632973498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35216161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hrdinova, Johana</creatorcontrib><creatorcontrib>Fernández, Delia I</creatorcontrib><creatorcontrib>Ercig, Bogac</creatorcontrib><creatorcontrib>Tullemans, Bibian M E</creatorcontrib><creatorcontrib>Suylen, Dennis P L</creatorcontrib><creatorcontrib>Agten, Stijn M</creatorcontrib><creatorcontrib>Jurk, Kerstin</creatorcontrib><creatorcontrib>Hackeng, Tilman M</creatorcontrib><creatorcontrib>Vanhoorelbeke, Karen</creatorcontrib><creatorcontrib>Voorberg, Jan</creatorcontrib><creatorcontrib>Reutelingsperger, Chris P M</creatorcontrib><creatorcontrib>Wichapong, Kanin</creatorcontrib><creatorcontrib>Heemskerk, Johan W M</creatorcontrib><creatorcontrib>Nicolaes, Gerry A F</creatorcontrib><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Blood clots</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - physiology</subject><subject>Cardiovascular diseases</subject><subject>Cells, Cultured</subject><subject>Chemical synthesis</subject><subject>Collagen</subject><subject>Design</subject><subject>Domains</subject><subject>Drugs</subject><subject>Flow cytometry</subject><subject>Free energy</subject><subject>glycoprotein Ib</subject><subject>Glycoproteins</subject><subject>Horses</subject><subject>Humans</subject><subject>in silico peptide design</subject><subject>Microfluidics</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Platelet Aggregation</subject><subject>Platelet Glycoprotein GPIb-IX Complex - chemistry</subject><subject>platelets</subject><subject>Protein Binding</subject><subject>Shear rate</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Thrombosis</subject><subject>thrombus</subject><subject>Von Willebrand factor</subject><subject>von Willebrand Factor - chemistry</subject><subject>von Willebrand Factor - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEYhgdRbK2eeSwBTzzoaH5mMpMTYbvaulCwUMXDkJ9vZrPMJmuSWdn78Ea8Ea_JWbeWrQSS8OXJw5fwFsVLgt8yJvA7t1onynBFccUfFaekorTEmDePj_YnxbOUVhhTRmvxtDhhNSV8GqfFz9scR5PHCOWFSmDRfGcGZ9DVsDNhE0MG59FC__5VfoDothNwA5vsLCS08BliN1V9j364vETb4NE3Nwygo_IWXSqTQywvnLcTco5mXQcm7-mbQWUYIKNZ30foVXbTzdFbiOh2CSo-L550akjw4m49K75efvwy_1Ref75azGfXpamaNpc1IaTVlAqqGQgLioJQhqm2o5RUFdOCq5poYTnwhtYWd1oDrWrT1qphXcvOisXBa4NayU10axV3Mign_xZC7KWK2ZkBpO5s3dkWak1UZS0W06QE0Rw0ppbhyfX-4NqMeg3WgM9RDQ-kD0-8W8o-bGXbNpyzfTNv7gQxfB8hZbl2ycAwKA9hTJJyxlreHNDX_6GrMEY_fdWeoqJhldhT5wfKxJBShO6-GYLlPjryODoT_ur4Affwv6ywP071w34</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Hrdinova, Johana</creator><creator>Fernández, Delia I</creator><creator>Ercig, Bogac</creator><creator>Tullemans, Bibian M E</creator><creator>Suylen, Dennis P L</creator><creator>Agten, Stijn M</creator><creator>Jurk, Kerstin</creator><creator>Hackeng, Tilman M</creator><creator>Vanhoorelbeke, Karen</creator><creator>Voorberg, Jan</creator><creator>Reutelingsperger, Chris P M</creator><creator>Wichapong, Kanin</creator><creator>Heemskerk, Johan W M</creator><creator>Nicolaes, Gerry A F</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0142-0843</orcidid><orcidid>https://orcid.org/0000-0001-5313-4035</orcidid><orcidid>https://orcid.org/0000-0001-6095-8972</orcidid><orcidid>https://orcid.org/0000-0002-5055-9019</orcidid><orcidid>https://orcid.org/0000-0002-9678-7084</orcidid><orcidid>https://orcid.org/0000-0002-5973-272X</orcidid><orcidid>https://orcid.org/0000-0002-2334-9403</orcidid><orcidid>https://orcid.org/0000-0002-2848-5121</orcidid></search><sort><creationdate>20220212</creationdate><title>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</title><author>Hrdinova, Johana ; Fernández, Delia I ; Ercig, Bogac ; Tullemans, Bibian M E ; Suylen, Dennis P L ; Agten, Stijn M ; Jurk, Kerstin ; Hackeng, Tilman M ; Vanhoorelbeke, Karen ; Voorberg, Jan ; Reutelingsperger, Chris P M ; Wichapong, Kanin ; Heemskerk, Johan W M ; Nicolaes, Gerry A F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Blood clots</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - physiology</topic><topic>Cardiovascular diseases</topic><topic>Cells, Cultured</topic><topic>Chemical synthesis</topic><topic>Collagen</topic><topic>Design</topic><topic>Domains</topic><topic>Drugs</topic><topic>Flow cytometry</topic><topic>Free energy</topic><topic>glycoprotein Ib</topic><topic>Glycoproteins</topic><topic>Horses</topic><topic>Humans</topic><topic>in silico peptide design</topic><topic>Microfluidics</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Platelet Aggregation</topic><topic>Platelet Glycoprotein GPIb-IX Complex - chemistry</topic><topic>platelets</topic><topic>Protein Binding</topic><topic>Shear rate</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Thrombosis</topic><topic>thrombus</topic><topic>Von Willebrand factor</topic><topic>von Willebrand Factor - chemistry</topic><topic>von Willebrand Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hrdinova, Johana</creatorcontrib><creatorcontrib>Fernández, Delia I</creatorcontrib><creatorcontrib>Ercig, Bogac</creatorcontrib><creatorcontrib>Tullemans, Bibian M E</creatorcontrib><creatorcontrib>Suylen, Dennis P L</creatorcontrib><creatorcontrib>Agten, Stijn M</creatorcontrib><creatorcontrib>Jurk, Kerstin</creatorcontrib><creatorcontrib>Hackeng, Tilman M</creatorcontrib><creatorcontrib>Vanhoorelbeke, Karen</creatorcontrib><creatorcontrib>Voorberg, Jan</creatorcontrib><creatorcontrib>Reutelingsperger, Chris P M</creatorcontrib><creatorcontrib>Wichapong, Kanin</creatorcontrib><creatorcontrib>Heemskerk, Johan W M</creatorcontrib><creatorcontrib>Nicolaes, Gerry A F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hrdinova, Johana</au><au>Fernández, Delia I</au><au>Ercig, Bogac</au><au>Tullemans, Bibian M E</au><au>Suylen, Dennis P L</au><au>Agten, Stijn M</au><au>Jurk, Kerstin</au><au>Hackeng, Tilman M</au><au>Vanhoorelbeke, Karen</au><au>Voorberg, Jan</au><au>Reutelingsperger, Chris P M</au><au>Wichapong, Kanin</au><au>Heemskerk, Johan W M</au><au>Nicolaes, Gerry A F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-02-12</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>2046</spage><pages>2046-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35216161</pmid><doi>10.3390/ijms23042046</doi><orcidid>https://orcid.org/0000-0003-0142-0843</orcidid><orcidid>https://orcid.org/0000-0001-5313-4035</orcidid><orcidid>https://orcid.org/0000-0001-6095-8972</orcidid><orcidid>https://orcid.org/0000-0002-5055-9019</orcidid><orcidid>https://orcid.org/0000-0002-9678-7084</orcidid><orcidid>https://orcid.org/0000-0002-5973-272X</orcidid><orcidid>https://orcid.org/0000-0002-2334-9403</orcidid><orcidid>https://orcid.org/0000-0002-2848-5121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-02, Vol.23 (4), p.2046
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bfd5fd8e5b1a4dd094dda91b6eb02d30
source Open Access: PubMed Central; Publicly Available Content Database
subjects Amino acids
Animals
Antibodies
Binding
Binding Sites
Blood clots
Blood platelets
Blood Platelets - metabolism
Blood Platelets - physiology
Cardiovascular diseases
Cells, Cultured
Chemical synthesis
Collagen
Design
Domains
Drugs
Flow cytometry
Free energy
glycoprotein Ib
Glycoproteins
Horses
Humans
in silico peptide design
Microfluidics
Peptides
Peptides - chemistry
Peptides - metabolism
Platelet Aggregation
Platelet Glycoprotein GPIb-IX Complex - chemistry
platelets
Protein Binding
Shear rate
Shear stress
Stress, Mechanical
Thrombosis
thrombus
Von Willebrand factor
von Willebrand Factor - chemistry
von Willebrand Factor - metabolism
title Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Based%20Cyclic%20Glycoprotein%20Ib%CE%B1-Derived%20Peptides%20Interfering%20with%20von%20Willebrand%20Factor-Binding,%20Affecting%20Platelet%20Aggregation%20under%20Shear&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hrdinova,%20Johana&rft.date=2022-02-12&rft.volume=23&rft.issue=4&rft.spage=2046&rft.pages=2046-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23042046&rft_dat=%3Cproquest_doaj_%3E2632973498%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-51118b2292b3e9dea2e9ac3a8f221443b96a51b9d6e6725d0fbbe245c85a73f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632973498&rft_id=info:pmid/35216161&rfr_iscdi=true