Loading…
Application of the Sol-Gel Method at the Fabrication of PLZT:Yb3+ Ceramics
The aim of presented study was to obtain the PLZT:Yb ceramics. Nanopowders of itterbium doped PLZT materials were synthesized by the sol-gel method from high quality metaloorganic precursors, as lead (II) acetate, lanthanum acetate, ytterbium acetate, zirconium (IV) propoxide and titanium (IV) propo...
Saved in:
Published in: | Archives of metallurgy and materials 2016-09, Vol.61 (3), p.1095-1100 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of presented study was to obtain the PLZT:Yb
ceramics. Nanopowders of itterbium doped PLZT materials were synthesized by the sol-gel method from high quality metaloorganic precursors, as lead (II) acetate, lanthanum acetate, ytterbium acetate, zirconium (IV) propoxide and titanium (IV) propoxide. Anhydrous acetic acid and n-propyl alcohol were used as solvents, while acetyloacetone was added as stabilizer of hydrolysis reactions. Thermal evolution of the dried gels, before and after calcination, was studied by the simultaneous thermal analysis. The amorphous PLZT:Yb
gels were first calcined in the furnace at
= 850°C, and then mixed in the planetary ball mill. Additionally, the mean particle sizes were calculated by means of powder specific surface area measurements, based on the BET physical adsorption isotherm. Such obtained powders were subsequently pressed into pellets, and sintered by the free sintering method at temperature
= 1250°C / 6h. The morphology of fabricated PLZT:Yb
ceramic powders and samples was studied using Scanning Electron Microscopy. Chemical characterization of samples was carried on using the Energy-dispersive X-ray spectroscopy - EDS system. Studies provided detailed data concerning the relationships between doping and preparing conditions on the basic physical and chemical properties of obtained ceramic materials. |
---|---|
ISSN: | 2300-1909 1733-3490 2300-1909 |
DOI: | 10.1515/amm-2016-0236 |