Loading…

BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network

In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, nam...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.59059-59068
Main Authors: Ning, Xin, Tian, Weijuan, Li, Weijun, Lu, Yueyue, Nie, Shuai, Sun, Linjun, Chen, Ziheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3
cites cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3
container_end_page 59068
container_issue
container_start_page 59059
container_title IEEE access
container_volume 8
creator Ning, Xin
Tian, Weijuan
Li, Weijun
Lu, Yueyue
Nie, Shuai
Sun, Linjun
Chen, Ziheng
description In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.
doi_str_mv 10.1109/ACCESS.2020.2982782
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2</doaj_id><sourcerecordid>2453686063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBITGO_gEslzh35aNOEW9eNMWkCaYVzlCbZ1FGWkaRC_HtSNiF88ZNlv2f7AXCL4BQhyO_LqlrU9RRDDKeYM1wwfAFGGFGekpzQy3_4Gky838MYLJbyYgSWs3m5qUUlj_7ZhIdk1qbz1hkVWnuQXVKGYA4DTja2D-1hl9Sy93JnkmGi70wSp76se78BV1vZeTM55zF4e1y8Vk_p-mW5qsp1qghjIdWUcY54hgotGw01yRBGJAKNkeKFJBgigzDjUjJoIImLUpgponGmdKM1GYPViVdbuRdH135I9y2sbMVvwbqdkC60qjOi2Rqdc80brUxGZcNIQ5GiGce0wbnEkevuxHV09rM3Poi97V082wucxW9FaUpiFzl1KWe9d2b7p4qgGAwQJwPEYIA4G0B-AFMKdy4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453686063</pqid></control><display><type>article</type><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><source>IEEE Xplore Open Access Journals</source><creator>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</creator><creatorcontrib>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</creatorcontrib><description>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2982782</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Artificial neural networks ; attention routing ; CapsNet ; CNN ; Computer vision ; covering learning ; Disentangled representation ; Learning ; Representations</subject><ispartof>IEEE access, 2020, Vol.8, p.59059-59068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</citedby><cites>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</cites><orcidid>0000-0003-3141-1972 ; 0000-0001-9668-2883 ; 0000-0001-7897-1673 ; 0000-0002-9287-9467 ; 0000-0001-6722-7056 ; 0000-0002-2585-637X ; 0000-0002-6810-9075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Tian, Weijuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Lu, Yueyue</creatorcontrib><creatorcontrib>Nie, Shuai</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Chen, Ziheng</creatorcontrib><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><title>IEEE access</title><description>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>attention routing</subject><subject>CapsNet</subject><subject>CNN</subject><subject>Computer vision</subject><subject>covering learning</subject><subject>Disentangled representation</subject><subject>Learning</subject><subject>Representations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBITGO_gEslzh35aNOEW9eNMWkCaYVzlCbZ1FGWkaRC_HtSNiF88ZNlv2f7AXCL4BQhyO_LqlrU9RRDDKeYM1wwfAFGGFGekpzQy3_4Gky838MYLJbyYgSWs3m5qUUlj_7ZhIdk1qbz1hkVWnuQXVKGYA4DTja2D-1hl9Sy93JnkmGi70wSp76se78BV1vZeTM55zF4e1y8Vk_p-mW5qsp1qghjIdWUcY54hgotGw01yRBGJAKNkeKFJBgigzDjUjJoIImLUpgponGmdKM1GYPViVdbuRdH135I9y2sbMVvwbqdkC60qjOi2Rqdc80brUxGZcNIQ5GiGce0wbnEkevuxHV09rM3Poi97V082wucxW9FaUpiFzl1KWe9d2b7p4qgGAwQJwPEYIA4G0B-AFMKdy4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ning, Xin</creator><creator>Tian, Weijuan</creator><creator>Li, Weijun</creator><creator>Lu, Yueyue</creator><creator>Nie, Shuai</creator><creator>Sun, Linjun</creator><creator>Chen, Ziheng</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3141-1972</orcidid><orcidid>https://orcid.org/0000-0001-9668-2883</orcidid><orcidid>https://orcid.org/0000-0001-7897-1673</orcidid><orcidid>https://orcid.org/0000-0002-9287-9467</orcidid><orcidid>https://orcid.org/0000-0001-6722-7056</orcidid><orcidid>https://orcid.org/0000-0002-2585-637X</orcidid><orcidid>https://orcid.org/0000-0002-6810-9075</orcidid></search><sort><creationdate>2020</creationdate><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><author>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>attention routing</topic><topic>CapsNet</topic><topic>CNN</topic><topic>Computer vision</topic><topic>covering learning</topic><topic>Disentangled representation</topic><topic>Learning</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Tian, Weijuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Lu, Yueyue</creatorcontrib><creatorcontrib>Nie, Shuai</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Chen, Ziheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Xin</au><au>Tian, Weijuan</au><au>Li, Weijun</au><au>Lu, Yueyue</au><au>Nie, Shuai</au><au>Sun, Linjun</au><au>Chen, Ziheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</atitle><jtitle>IEEE access</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>59059</spage><epage>59068</epage><pages>59059-59068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2020.2982782</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3141-1972</orcidid><orcidid>https://orcid.org/0000-0001-9668-2883</orcidid><orcidid>https://orcid.org/0000-0001-7897-1673</orcidid><orcidid>https://orcid.org/0000-0002-9287-9467</orcidid><orcidid>https://orcid.org/0000-0001-6722-7056</orcidid><orcidid>https://orcid.org/0000-0002-2585-637X</orcidid><orcidid>https://orcid.org/0000-0002-6810-9075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.59059-59068
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2
source IEEE Xplore Open Access Journals
subjects Accuracy
Artificial neural networks
attention routing
CapsNet
CNN
Computer vision
covering learning
Disentangled representation
Learning
Representations
title BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BDARS_CapsNet:%20Bi-Directional%20Attention%20Routing%20Sausage%20Capsule%20Network&rft.jtitle=IEEE%20access&rft.au=Ning,%20Xin&rft.date=2020&rft.volume=8&rft.spage=59059&rft.epage=59068&rft.pages=59059-59068&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2020.2982782&rft_dat=%3Cproquest_doaj_%3E2453686063%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453686063&rft_id=info:pmid/&rfr_iscdi=true