Loading…
BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network
In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, nam...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.59059-59068 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3 |
container_end_page | 59068 |
container_issue | |
container_start_page | 59059 |
container_title | IEEE access |
container_volume | 8 |
creator | Ning, Xin Tian, Weijuan Li, Weijun Lu, Yueyue Nie, Shuai Sun, Linjun Chen, Ziheng |
description | In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning. |
doi_str_mv | 10.1109/ACCESS.2020.2982782 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2</doaj_id><sourcerecordid>2453686063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBITGO_gEslzh35aNOEW9eNMWkCaYVzlCbZ1FGWkaRC_HtSNiF88ZNlv2f7AXCL4BQhyO_LqlrU9RRDDKeYM1wwfAFGGFGekpzQy3_4Gky838MYLJbyYgSWs3m5qUUlj_7ZhIdk1qbz1hkVWnuQXVKGYA4DTja2D-1hl9Sy93JnkmGi70wSp76se78BV1vZeTM55zF4e1y8Vk_p-mW5qsp1qghjIdWUcY54hgotGw01yRBGJAKNkeKFJBgigzDjUjJoIImLUpgponGmdKM1GYPViVdbuRdH135I9y2sbMVvwbqdkC60qjOi2Rqdc80brUxGZcNIQ5GiGce0wbnEkevuxHV09rM3Poi97V082wucxW9FaUpiFzl1KWe9d2b7p4qgGAwQJwPEYIA4G0B-AFMKdy4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453686063</pqid></control><display><type>article</type><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><source>IEEE Xplore Open Access Journals</source><creator>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</creator><creatorcontrib>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</creatorcontrib><description>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2982782</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Artificial neural networks ; attention routing ; CapsNet ; CNN ; Computer vision ; covering learning ; Disentangled representation ; Learning ; Representations</subject><ispartof>IEEE access, 2020, Vol.8, p.59059-59068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</citedby><cites>FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</cites><orcidid>0000-0003-3141-1972 ; 0000-0001-9668-2883 ; 0000-0001-7897-1673 ; 0000-0002-9287-9467 ; 0000-0001-6722-7056 ; 0000-0002-2585-637X ; 0000-0002-6810-9075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Tian, Weijuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Lu, Yueyue</creatorcontrib><creatorcontrib>Nie, Shuai</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Chen, Ziheng</creatorcontrib><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><title>IEEE access</title><description>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>attention routing</subject><subject>CapsNet</subject><subject>CNN</subject><subject>Computer vision</subject><subject>covering learning</subject><subject>Disentangled representation</subject><subject>Learning</subject><subject>Representations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBITGO_gEslzh35aNOEW9eNMWkCaYVzlCbZ1FGWkaRC_HtSNiF88ZNlv2f7AXCL4BQhyO_LqlrU9RRDDKeYM1wwfAFGGFGekpzQy3_4Gky838MYLJbyYgSWs3m5qUUlj_7ZhIdk1qbz1hkVWnuQXVKGYA4DTja2D-1hl9Sy93JnkmGi70wSp76se78BV1vZeTM55zF4e1y8Vk_p-mW5qsp1qghjIdWUcY54hgotGw01yRBGJAKNkeKFJBgigzDjUjJoIImLUpgponGmdKM1GYPViVdbuRdH135I9y2sbMVvwbqdkC60qjOi2Rqdc80brUxGZcNIQ5GiGce0wbnEkevuxHV09rM3Poi97V082wucxW9FaUpiFzl1KWe9d2b7p4qgGAwQJwPEYIA4G0B-AFMKdy4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ning, Xin</creator><creator>Tian, Weijuan</creator><creator>Li, Weijun</creator><creator>Lu, Yueyue</creator><creator>Nie, Shuai</creator><creator>Sun, Linjun</creator><creator>Chen, Ziheng</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3141-1972</orcidid><orcidid>https://orcid.org/0000-0001-9668-2883</orcidid><orcidid>https://orcid.org/0000-0001-7897-1673</orcidid><orcidid>https://orcid.org/0000-0002-9287-9467</orcidid><orcidid>https://orcid.org/0000-0001-6722-7056</orcidid><orcidid>https://orcid.org/0000-0002-2585-637X</orcidid><orcidid>https://orcid.org/0000-0002-6810-9075</orcidid></search><sort><creationdate>2020</creationdate><title>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</title><author>Ning, Xin ; Tian, Weijuan ; Li, Weijun ; Lu, Yueyue ; Nie, Shuai ; Sun, Linjun ; Chen, Ziheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>attention routing</topic><topic>CapsNet</topic><topic>CNN</topic><topic>Computer vision</topic><topic>covering learning</topic><topic>Disentangled representation</topic><topic>Learning</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Tian, Weijuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Lu, Yueyue</creatorcontrib><creatorcontrib>Nie, Shuai</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Chen, Ziheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Xin</au><au>Tian, Weijuan</au><au>Li, Weijun</au><au>Lu, Yueyue</au><au>Nie, Shuai</au><au>Sun, Linjun</au><au>Chen, Ziheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network</atitle><jtitle>IEEE access</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>59059</spage><epage>59068</epage><pages>59059-59068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>In order to improve the accuracy of capsule network in disentangled representation, and further expand its application in computer vision, a novel BDARS_CapsNet (bi-directional attention routing sausage capsule network) architecture is proposed in this paper. Firstly, the bi-directional routing, namely bottom-up and top-down attention is used to achieve information feed-forward and feedback mechanism, which contributes to describing the attributes of object entity more accurately and completely. Secondly, inspired by the concept of covering learning, the sausage measure model is introduced into the network. The sausage model measures both the similarities and differences of the capsules and projects them into a more complex curved surface, which makes it possible to approximate any nonlinear function with arbitrary precision and preserving the local responsiveness of capsule entity to the maximum. Finally, the BDARS_CapsNet combines the CNN (Convolutional Neural Network), bi-directional attention routing, and sausage measure into capsule network modeling, and makes full use of high-level category information and low-level vision information; as a result, the reconstruction and classification accuracy is accordingly improved. Experiments demonstrate the effectiveness of proposed information routing, sausage measure, and new framework. Furthermore, the proposed BDARS_CapsNet provides a foundation for future research on disentangled representation learning.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2020.2982782</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3141-1972</orcidid><orcidid>https://orcid.org/0000-0001-9668-2883</orcidid><orcidid>https://orcid.org/0000-0001-7897-1673</orcidid><orcidid>https://orcid.org/0000-0002-9287-9467</orcidid><orcidid>https://orcid.org/0000-0001-6722-7056</orcidid><orcidid>https://orcid.org/0000-0002-2585-637X</orcidid><orcidid>https://orcid.org/0000-0002-6810-9075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.59059-59068 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bfed59d9bdce46ab83b61c64926b25a2 |
source | IEEE Xplore Open Access Journals |
subjects | Accuracy Artificial neural networks attention routing CapsNet CNN Computer vision covering learning Disentangled representation Learning Representations |
title | BDARS_CapsNet: Bi-Directional Attention Routing Sausage Capsule Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BDARS_CapsNet:%20Bi-Directional%20Attention%20Routing%20Sausage%20Capsule%20Network&rft.jtitle=IEEE%20access&rft.au=Ning,%20Xin&rft.date=2020&rft.volume=8&rft.spage=59059&rft.epage=59068&rft.pages=59059-59068&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2020.2982782&rft_dat=%3Cproquest_doaj_%3E2453686063%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d689919417dabd0d341213d0dd21c97a3201e1289aa80e03008604c3d24cdbdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453686063&rft_id=info:pmid/&rfr_iscdi=true |