Loading…

A data-driven methodology towards evaluating the potential of drug repurposing hypotheses

[Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indication...

Full description

Saved in:
Bibliographic Details
Published in:Computational and structural biotechnology journal 2021-01, Vol.19, p.4559-4573
Main Authors: Prieto Santamaría, Lucía, Ugarte Carro, Esther, Díaz Uzquiano, Marina, Menasalvas Ruiz, Ernestina, Pérez Gallardo, Yuliana, Rodríguez-González, Alejandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3
cites cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3
container_end_page 4573
container_issue
container_start_page 4559
container_title Computational and structural biotechnology journal
container_volume 19
creator Prieto Santamaría, Lucía
Ugarte Carro, Esther
Díaz Uzquiano, Marina
Menasalvas Ruiz, Ernestina
Pérez Gallardo, Yuliana
Rodríguez-González, Alejandro
description [Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.
doi_str_mv 10.1016/j.csbj.2021.08.003
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2001037021003342</els_id><doaj_id>oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263</doaj_id><sourcerecordid>2568597848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CUI5eEcZwPR0JIVUWhUiUucOBkOZ5x4igbL7azaP99vWxV0Qu--GPmfUav3yx7z6BkwNqPc6nDMJcVVKwEUQLwV9llBcAK4B28_ud8kV2HMENagrU9h7fZBa_rjtV9f5n9uslRRVWgtwda8x3FyaFb3HjMo_ujPIacDmrZVLTrmMeJ8r2LtEarltyZHP025p72m9-7cOqYjqk-UaDwLntj1BLo-mm_yn7efflx-614-P71_vbmodB1L2LRwkCqV6B1K6CpBO9EwyqjDasAk1NErLGvwHAmGNYcUbChMz3TahgMU_wquz9z0alZ7r3dKX-UTln598H5USofrV5IauDAsWcGAWrDmiFNEYjp2nKqWp5Yn8-s_TbsCHUy6tXyAvqystpJju4gBRdd10ICfHgCePd7oxDlzgZNy6JWcluQVdOKpu9ELVJrdW7V3oXgyTyPYSBPEctZniKWp4glCJkiTqJPZxGlHz1Y8jJoS6smtJ50TJbt_-SPMh2wJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568597848</pqid></control><display><type>article</type><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><source>PubMed Central(OA)</source><source>ScienceDirect Journals</source><creator>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</creator><creatorcontrib>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</creatorcontrib><description>[Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</description><identifier>ISSN: 2001-0370</identifier><identifier>EISSN: 2001-0370</identifier><identifier>DOI: 10.1016/j.csbj.2021.08.003</identifier><identifier>PMID: 34471499</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data integration ; Disease understanding ; DISNET knowledge base ; Drug repositioning ; Drug repurposing ; Drug-disease validation</subject><ispartof>Computational and structural biotechnology journal, 2021-01, Vol.19, p.4559-4573</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</citedby><cites>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2001037021003342$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Prieto Santamaría, Lucía</creatorcontrib><creatorcontrib>Ugarte Carro, Esther</creatorcontrib><creatorcontrib>Díaz Uzquiano, Marina</creatorcontrib><creatorcontrib>Menasalvas Ruiz, Ernestina</creatorcontrib><creatorcontrib>Pérez Gallardo, Yuliana</creatorcontrib><creatorcontrib>Rodríguez-González, Alejandro</creatorcontrib><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><title>Computational and structural biotechnology journal</title><description>[Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</description><subject>Data integration</subject><subject>Disease understanding</subject><subject>DISNET knowledge base</subject><subject>Drug repositioning</subject><subject>Drug repurposing</subject><subject>Drug-disease validation</subject><issn>2001-0370</issn><issn>2001-0370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CUI5eEcZwPR0JIVUWhUiUucOBkOZ5x4igbL7azaP99vWxV0Qu--GPmfUav3yx7z6BkwNqPc6nDMJcVVKwEUQLwV9llBcAK4B28_ud8kV2HMENagrU9h7fZBa_rjtV9f5n9uslRRVWgtwda8x3FyaFb3HjMo_ujPIacDmrZVLTrmMeJ8r2LtEarltyZHP025p72m9-7cOqYjqk-UaDwLntj1BLo-mm_yn7efflx-614-P71_vbmodB1L2LRwkCqV6B1K6CpBO9EwyqjDasAk1NErLGvwHAmGNYcUbChMz3TahgMU_wquz9z0alZ7r3dKX-UTln598H5USofrV5IauDAsWcGAWrDmiFNEYjp2nKqWp5Yn8-s_TbsCHUy6tXyAvqystpJju4gBRdd10ICfHgCePd7oxDlzgZNy6JWcluQVdOKpu9ELVJrdW7V3oXgyTyPYSBPEctZniKWp4glCJkiTqJPZxGlHz1Y8jJoS6smtJ50TJbt_-SPMh2wJQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Prieto Santamaría, Lucía</creator><creator>Ugarte Carro, Esther</creator><creator>Díaz Uzquiano, Marina</creator><creator>Menasalvas Ruiz, Ernestina</creator><creator>Pérez Gallardo, Yuliana</creator><creator>Rodríguez-González, Alejandro</creator><general>Elsevier B.V</general><general>Research Network of Computational and Structural Biotechnology</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><author>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data integration</topic><topic>Disease understanding</topic><topic>DISNET knowledge base</topic><topic>Drug repositioning</topic><topic>Drug repurposing</topic><topic>Drug-disease validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto Santamaría, Lucía</creatorcontrib><creatorcontrib>Ugarte Carro, Esther</creatorcontrib><creatorcontrib>Díaz Uzquiano, Marina</creatorcontrib><creatorcontrib>Menasalvas Ruiz, Ernestina</creatorcontrib><creatorcontrib>Pérez Gallardo, Yuliana</creatorcontrib><creatorcontrib>Rodríguez-González, Alejandro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computational and structural biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto Santamaría, Lucía</au><au>Ugarte Carro, Esther</au><au>Díaz Uzquiano, Marina</au><au>Menasalvas Ruiz, Ernestina</au><au>Pérez Gallardo, Yuliana</au><au>Rodríguez-González, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</atitle><jtitle>Computational and structural biotechnology journal</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>19</volume><spage>4559</spage><epage>4573</epage><pages>4559-4573</pages><issn>2001-0370</issn><eissn>2001-0370</eissn><abstract>[Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</abstract><pub>Elsevier B.V</pub><pmid>34471499</pmid><doi>10.1016/j.csbj.2021.08.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2001-0370
ispartof Computational and structural biotechnology journal, 2021-01, Vol.19, p.4559-4573
issn 2001-0370
2001-0370
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263
source PubMed Central(OA); ScienceDirect Journals
subjects Data integration
Disease understanding
DISNET knowledge base
Drug repositioning
Drug repurposing
Drug-disease validation
title A data-driven methodology towards evaluating the potential of drug repurposing hypotheses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20methodology%20towards%20evaluating%20the%20potential%20of%20drug%20repurposing%20hypotheses&rft.jtitle=Computational%20and%20structural%20biotechnology%20journal&rft.au=Prieto%20Santamar%C3%ADa,%20Luc%C3%ADa&rft.date=2021-01-01&rft.volume=19&rft.spage=4559&rft.epage=4573&rft.pages=4559-4573&rft.issn=2001-0370&rft.eissn=2001-0370&rft_id=info:doi/10.1016/j.csbj.2021.08.003&rft_dat=%3Cproquest_doaj_%3E2568597848%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568597848&rft_id=info:pmid/34471499&rfr_iscdi=true