Loading…
A data-driven methodology towards evaluating the potential of drug repurposing hypotheses
[Display omitted] Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indication...
Saved in:
Published in: | Computational and structural biotechnology journal 2021-01, Vol.19, p.4559-4573 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3 |
container_end_page | 4573 |
container_issue | |
container_start_page | 4559 |
container_title | Computational and structural biotechnology journal |
container_volume | 19 |
creator | Prieto Santamaría, Lucía Ugarte Carro, Esther Díaz Uzquiano, Marina Menasalvas Ruiz, Ernestina Pérez Gallardo, Yuliana Rodríguez-González, Alejandro |
description | [Display omitted]
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses. |
doi_str_mv | 10.1016/j.csbj.2021.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2001037021003342</els_id><doaj_id>oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263</doaj_id><sourcerecordid>2568597848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CUI5eEcZwPR0JIVUWhUiUucOBkOZ5x4igbL7azaP99vWxV0Qu--GPmfUav3yx7z6BkwNqPc6nDMJcVVKwEUQLwV9llBcAK4B28_ud8kV2HMENagrU9h7fZBa_rjtV9f5n9uslRRVWgtwda8x3FyaFb3HjMo_ujPIacDmrZVLTrmMeJ8r2LtEarltyZHP025p72m9-7cOqYjqk-UaDwLntj1BLo-mm_yn7efflx-614-P71_vbmodB1L2LRwkCqV6B1K6CpBO9EwyqjDasAk1NErLGvwHAmGNYcUbChMz3TahgMU_wquz9z0alZ7r3dKX-UTln598H5USofrV5IauDAsWcGAWrDmiFNEYjp2nKqWp5Yn8-s_TbsCHUy6tXyAvqystpJju4gBRdd10ICfHgCePd7oxDlzgZNy6JWcluQVdOKpu9ELVJrdW7V3oXgyTyPYSBPEctZniKWp4glCJkiTqJPZxGlHz1Y8jJoS6smtJ50TJbt_-SPMh2wJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568597848</pqid></control><display><type>article</type><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><source>PubMed Central(OA)</source><source>ScienceDirect Journals</source><creator>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</creator><creatorcontrib>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</creatorcontrib><description>[Display omitted]
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</description><identifier>ISSN: 2001-0370</identifier><identifier>EISSN: 2001-0370</identifier><identifier>DOI: 10.1016/j.csbj.2021.08.003</identifier><identifier>PMID: 34471499</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data integration ; Disease understanding ; DISNET knowledge base ; Drug repositioning ; Drug repurposing ; Drug-disease validation</subject><ispartof>Computational and structural biotechnology journal, 2021-01, Vol.19, p.4559-4573</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</citedby><cites>FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2001037021003342$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Prieto Santamaría, Lucía</creatorcontrib><creatorcontrib>Ugarte Carro, Esther</creatorcontrib><creatorcontrib>Díaz Uzquiano, Marina</creatorcontrib><creatorcontrib>Menasalvas Ruiz, Ernestina</creatorcontrib><creatorcontrib>Pérez Gallardo, Yuliana</creatorcontrib><creatorcontrib>Rodríguez-González, Alejandro</creatorcontrib><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><title>Computational and structural biotechnology journal</title><description>[Display omitted]
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</description><subject>Data integration</subject><subject>Disease understanding</subject><subject>DISNET knowledge base</subject><subject>Drug repositioning</subject><subject>Drug repurposing</subject><subject>Drug-disease validation</subject><issn>2001-0370</issn><issn>2001-0370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CUI5eEcZwPR0JIVUWhUiUucOBkOZ5x4igbL7azaP99vWxV0Qu--GPmfUav3yx7z6BkwNqPc6nDMJcVVKwEUQLwV9llBcAK4B28_ud8kV2HMENagrU9h7fZBa_rjtV9f5n9uslRRVWgtwda8x3FyaFb3HjMo_ujPIacDmrZVLTrmMeJ8r2LtEarltyZHP025p72m9-7cOqYjqk-UaDwLntj1BLo-mm_yn7efflx-614-P71_vbmodB1L2LRwkCqV6B1K6CpBO9EwyqjDasAk1NErLGvwHAmGNYcUbChMz3TahgMU_wquz9z0alZ7r3dKX-UTln598H5USofrV5IauDAsWcGAWrDmiFNEYjp2nKqWp5Yn8-s_TbsCHUy6tXyAvqystpJju4gBRdd10ICfHgCePd7oxDlzgZNy6JWcluQVdOKpu9ELVJrdW7V3oXgyTyPYSBPEctZniKWp4glCJkiTqJPZxGlHz1Y8jJoS6smtJ50TJbt_-SPMh2wJQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Prieto Santamaría, Lucía</creator><creator>Ugarte Carro, Esther</creator><creator>Díaz Uzquiano, Marina</creator><creator>Menasalvas Ruiz, Ernestina</creator><creator>Pérez Gallardo, Yuliana</creator><creator>Rodríguez-González, Alejandro</creator><general>Elsevier B.V</general><general>Research Network of Computational and Structural Biotechnology</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</title><author>Prieto Santamaría, Lucía ; Ugarte Carro, Esther ; Díaz Uzquiano, Marina ; Menasalvas Ruiz, Ernestina ; Pérez Gallardo, Yuliana ; Rodríguez-González, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data integration</topic><topic>Disease understanding</topic><topic>DISNET knowledge base</topic><topic>Drug repositioning</topic><topic>Drug repurposing</topic><topic>Drug-disease validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto Santamaría, Lucía</creatorcontrib><creatorcontrib>Ugarte Carro, Esther</creatorcontrib><creatorcontrib>Díaz Uzquiano, Marina</creatorcontrib><creatorcontrib>Menasalvas Ruiz, Ernestina</creatorcontrib><creatorcontrib>Pérez Gallardo, Yuliana</creatorcontrib><creatorcontrib>Rodríguez-González, Alejandro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computational and structural biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto Santamaría, Lucía</au><au>Ugarte Carro, Esther</au><au>Díaz Uzquiano, Marina</au><au>Menasalvas Ruiz, Ernestina</au><au>Pérez Gallardo, Yuliana</au><au>Rodríguez-González, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven methodology towards evaluating the potential of drug repurposing hypotheses</atitle><jtitle>Computational and structural biotechnology journal</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>19</volume><spage>4559</spage><epage>4573</epage><pages>4559-4573</pages><issn>2001-0370</issn><eissn>2001-0370</eissn><abstract>[Display omitted]
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.</abstract><pub>Elsevier B.V</pub><pmid>34471499</pmid><doi>10.1016/j.csbj.2021.08.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2001-0370 |
ispartof | Computational and structural biotechnology journal, 2021-01, Vol.19, p.4559-4573 |
issn | 2001-0370 2001-0370 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c0303d91fd004f15bcf18ddfd063e263 |
source | PubMed Central(OA); ScienceDirect Journals |
subjects | Data integration Disease understanding DISNET knowledge base Drug repositioning Drug repurposing Drug-disease validation |
title | A data-driven methodology towards evaluating the potential of drug repurposing hypotheses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20methodology%20towards%20evaluating%20the%20potential%20of%20drug%20repurposing%20hypotheses&rft.jtitle=Computational%20and%20structural%20biotechnology%20journal&rft.au=Prieto%20Santamar%C3%ADa,%20Luc%C3%ADa&rft.date=2021-01-01&rft.volume=19&rft.spage=4559&rft.epage=4573&rft.pages=4559-4573&rft.issn=2001-0370&rft.eissn=2001-0370&rft_id=info:doi/10.1016/j.csbj.2021.08.003&rft_dat=%3Cproquest_doaj_%3E2568597848%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-60bea9a0cc680528378512fcf120d101ddd4d920f3181d43dd81b7f91cabbf1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568597848&rft_id=info:pmid/34471499&rfr_iscdi=true |