Loading…

Association of heat exposure and emergency ambulance calls: A multi-city study

Evidence of the impact of ambient temperatures on emergency ambulance calls (EACs) in developing countries contributes to the improvement and complete understanding of the acute health effects of temperatures. This study aimed to examine the impacts and burden of heat on EACs in China, quantify the...

Full description

Saved in:
Bibliographic Details
Published in:Advances in climate change research 2021-10, Vol.12 (5), p.619-627
Main Authors: Li, Yong-Hong, Ye, Dian-Xiu, Liu, Yue, Li, Na, Meng, Cong-Shen, Wang, Yan, Wang, Yu, Jin, Xin, Bi, Peng, Tong, Shilu, Cheng, Yi-Bin, Yao, Xiao-Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evidence of the impact of ambient temperatures on emergency ambulance calls (EACs) in developing countries contributes to the improvement and complete understanding of the acute health effects of temperatures. This study aimed to examine the impacts and burden of heat on EACs in China, quantify the contributions of regional modifiers, and identify the vulnerable populations. A semi-parametric generalized additive model with a Poisson distribution was used to analyze the city-specific impacts of the daily maximum temperature (Tmax) on EACs in June–August in 2014–2017. Stratified analyses by sex and age were performed to identify the vulnerable sub-populations. Meta-analysis was undertaken to illustrate the pooled associations. Further subgroup analysis, stratified by climate, latitude, and per capita disposable income (PCDI), and meta-regression analysis were conducted to explore the regional heterogeneity and quantify the contributions of possible modifiers. The city- and region-specific attributable fractions of EACs attributable to heat were calculated. Strong associations were observed between the daily Tmax and total EACs in all cities. A total of 11.7% (95% confidence interval (CI): 11.2%–12.3%) of EACs were attributed to high temperatures in ten Chinese cities, and the central region with a low level of PCDI had the highest attributable fraction of 17.8% (95% CI: 17.2%–18.4%). People living in the central region with lower PCDI, and those aged 18–44 and 0–6 years were more vulnerable to heat than the others. The combined effects of PCDI, temperature, and latitude contributed 88.6% of the regional heterogeneity. The results complemented the understanding of the burden of EACs attributable to heat in developing countries and the quantitative contribution of regional modifiers.
ISSN:1674-9278
1674-9278
DOI:10.1016/j.accre.2021.06.001