Loading…

Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine

Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardi...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2022-08, Vol.12 (16), p.2049
Main Authors: Trachsel, Dagmar S., Stage, Hannah J., Rausch, Sebastian, Trappe, Susanne, Söllig, Katharina, Sponder, Gerhard, Merle, Roswitha, Aschenbach, Jörg R., Gehlen, Heidrun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3
cites cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3
container_end_page
container_issue 16
container_start_page 2049
container_title Animals (Basel)
container_volume 12
creator Trachsel, Dagmar S.
Stage, Hannah J.
Rausch, Sebastian
Trappe, Susanne
Söllig, Katharina
Sponder, Gerhard
Merle, Roswitha
Aschenbach, Jörg R.
Gehlen, Heidrun
description Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.
doi_str_mv 10.3390/ani12162049
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95</doaj_id><sourcerecordid>2707601493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</originalsourceid><addsrcrecordid>eNpdkl9rFDEQwBdRbKl98gsEfBFk2_zP5UU4zqoHFcU7n0M2O9vLsbu5JtlK_Vh-wqbdIq15SZj8-M0wM1X1luAzxjQ-t6MnlEiKuX5RHVOsZE0lES-fvI-q05T2uBwlGBHkdXXEJMZacnxc_V2F4WCjT2FEoUObMEUHCdmxRd8g70KbUBciyjtA6xR6m_0MXlxPfgS0bP0hJEBbn9IE9SeI_gZatMkxDLY_32QY0Ar6fjb-iND7wY823qKfkKY-J1R02x34WALWPdhzQOvRTc2c67fPOyTq5R_rbrNvS9I31avO9glOH--T6tfni-3qa335_ct6tbysHRc010ouLKNMa9vYhmBQ0DZC0EZIojAVuONaKalsu3AdY7RTfNE2SlBsgUpgjp1U69nbBrs3h-iHUrcJ1puHQIhXxsbsXQ_GYeFwwxrXcMk1K0rXUbsgWnNOWy2K6-PsOkzNAK2DMUfbP5M-_xn9zlyFG6M5LgpcBO8fBTFcT5CyGXxypbN2hDAlQ1UZNyYleUHf_Yfuy1TH0qp7SmLN9YIX6sNMuRhSitD9K4Zgc79a5slqsTuhesHT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706094984</pqid></control><display><type>article</type><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><source>PubMed Central(OA)</source><source>ProQuest - Publicly Available Content Database</source><creator>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</creator><creatorcontrib>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</creatorcontrib><description>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</description><identifier>ISSN: 2076-2615</identifier><identifier>EISSN: 2076-2615</identifier><identifier>DOI: 10.3390/ani12162049</identifier><identifier>PMID: 36009640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adipose tissue ; adipose tissue differentiation ; Azacytidine ; Body fat ; Cardiology ; cardiomyocyte-like cells ; Cardiomyocytes ; CD29 antigen ; CD34 antigen ; CD44 antigen ; CD45 antigen ; Cell culture ; Cell differentiation ; Collagen ; Collagenase ; Differentiation ; Digestion ; DNA methylation ; Electrophysiology ; Explants ; Flow cytometry ; Heart ; horse ; Incubation ; mesenchymal stem cells ; Mesenchyme ; Nkx2.5 protein ; Pluripotency ; preadipocytes ; Rabbits ; Stem cell transplantation ; Stem cells ; Tissue culture</subject><ispartof>Animals (Basel), 2022-08, Vol.12 (16), p.2049</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</citedby><cites>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</cites><orcidid>0000-0002-8688-2926 ; 0000-0001-5080-1007 ; 0000-0001-5451-4232 ; 0000-0001-5103-8402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706094984/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706094984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Trachsel, Dagmar S.</creatorcontrib><creatorcontrib>Stage, Hannah J.</creatorcontrib><creatorcontrib>Rausch, Sebastian</creatorcontrib><creatorcontrib>Trappe, Susanne</creatorcontrib><creatorcontrib>Söllig, Katharina</creatorcontrib><creatorcontrib>Sponder, Gerhard</creatorcontrib><creatorcontrib>Merle, Roswitha</creatorcontrib><creatorcontrib>Aschenbach, Jörg R.</creatorcontrib><creatorcontrib>Gehlen, Heidrun</creatorcontrib><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><title>Animals (Basel)</title><description>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</description><subject>Adipose tissue</subject><subject>adipose tissue differentiation</subject><subject>Azacytidine</subject><subject>Body fat</subject><subject>Cardiology</subject><subject>cardiomyocyte-like cells</subject><subject>Cardiomyocytes</subject><subject>CD29 antigen</subject><subject>CD34 antigen</subject><subject>CD44 antigen</subject><subject>CD45 antigen</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Collagen</subject><subject>Collagenase</subject><subject>Differentiation</subject><subject>Digestion</subject><subject>DNA methylation</subject><subject>Electrophysiology</subject><subject>Explants</subject><subject>Flow cytometry</subject><subject>Heart</subject><subject>horse</subject><subject>Incubation</subject><subject>mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Nkx2.5 protein</subject><subject>Pluripotency</subject><subject>preadipocytes</subject><subject>Rabbits</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue culture</subject><issn>2076-2615</issn><issn>2076-2615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl9rFDEQwBdRbKl98gsEfBFk2_zP5UU4zqoHFcU7n0M2O9vLsbu5JtlK_Vh-wqbdIq15SZj8-M0wM1X1luAzxjQ-t6MnlEiKuX5RHVOsZE0lES-fvI-q05T2uBwlGBHkdXXEJMZacnxc_V2F4WCjT2FEoUObMEUHCdmxRd8g70KbUBciyjtA6xR6m_0MXlxPfgS0bP0hJEBbn9IE9SeI_gZatMkxDLY_32QY0Ar6fjb-iND7wY823qKfkKY-J1R02x34WALWPdhzQOvRTc2c67fPOyTq5R_rbrNvS9I31avO9glOH--T6tfni-3qa335_ct6tbysHRc010ouLKNMa9vYhmBQ0DZC0EZIojAVuONaKalsu3AdY7RTfNE2SlBsgUpgjp1U69nbBrs3h-iHUrcJ1puHQIhXxsbsXQ_GYeFwwxrXcMk1K0rXUbsgWnNOWy2K6-PsOkzNAK2DMUfbP5M-_xn9zlyFG6M5LgpcBO8fBTFcT5CyGXxypbN2hDAlQ1UZNyYleUHf_Yfuy1TH0qp7SmLN9YIX6sNMuRhSitD9K4Zgc79a5slqsTuhesHT</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Trachsel, Dagmar S.</creator><creator>Stage, Hannah J.</creator><creator>Rausch, Sebastian</creator><creator>Trappe, Susanne</creator><creator>Söllig, Katharina</creator><creator>Sponder, Gerhard</creator><creator>Merle, Roswitha</creator><creator>Aschenbach, Jörg R.</creator><creator>Gehlen, Heidrun</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8688-2926</orcidid><orcidid>https://orcid.org/0000-0001-5080-1007</orcidid><orcidid>https://orcid.org/0000-0001-5451-4232</orcidid><orcidid>https://orcid.org/0000-0001-5103-8402</orcidid></search><sort><creationdate>20220811</creationdate><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><author>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adipose tissue</topic><topic>adipose tissue differentiation</topic><topic>Azacytidine</topic><topic>Body fat</topic><topic>Cardiology</topic><topic>cardiomyocyte-like cells</topic><topic>Cardiomyocytes</topic><topic>CD29 antigen</topic><topic>CD34 antigen</topic><topic>CD44 antigen</topic><topic>CD45 antigen</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Collagen</topic><topic>Collagenase</topic><topic>Differentiation</topic><topic>Digestion</topic><topic>DNA methylation</topic><topic>Electrophysiology</topic><topic>Explants</topic><topic>Flow cytometry</topic><topic>Heart</topic><topic>horse</topic><topic>Incubation</topic><topic>mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Nkx2.5 protein</topic><topic>Pluripotency</topic><topic>preadipocytes</topic><topic>Rabbits</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trachsel, Dagmar S.</creatorcontrib><creatorcontrib>Stage, Hannah J.</creatorcontrib><creatorcontrib>Rausch, Sebastian</creatorcontrib><creatorcontrib>Trappe, Susanne</creatorcontrib><creatorcontrib>Söllig, Katharina</creatorcontrib><creatorcontrib>Sponder, Gerhard</creatorcontrib><creatorcontrib>Merle, Roswitha</creatorcontrib><creatorcontrib>Aschenbach, Jörg R.</creatorcontrib><creatorcontrib>Gehlen, Heidrun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Animals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trachsel, Dagmar S.</au><au>Stage, Hannah J.</au><au>Rausch, Sebastian</au><au>Trappe, Susanne</au><au>Söllig, Katharina</au><au>Sponder, Gerhard</au><au>Merle, Roswitha</au><au>Aschenbach, Jörg R.</au><au>Gehlen, Heidrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</atitle><jtitle>Animals (Basel)</jtitle><date>2022-08-11</date><risdate>2022</risdate><volume>12</volume><issue>16</issue><spage>2049</spage><pages>2049-</pages><issn>2076-2615</issn><eissn>2076-2615</eissn><abstract>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36009640</pmid><doi>10.3390/ani12162049</doi><orcidid>https://orcid.org/0000-0002-8688-2926</orcidid><orcidid>https://orcid.org/0000-0001-5080-1007</orcidid><orcidid>https://orcid.org/0000-0001-5451-4232</orcidid><orcidid>https://orcid.org/0000-0001-5103-8402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-2615
ispartof Animals (Basel), 2022-08, Vol.12 (16), p.2049
issn 2076-2615
2076-2615
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95
source PubMed Central(OA); ProQuest - Publicly Available Content Database
subjects Adipose tissue
adipose tissue differentiation
Azacytidine
Body fat
Cardiology
cardiomyocyte-like cells
Cardiomyocytes
CD29 antigen
CD34 antigen
CD44 antigen
CD45 antigen
Cell culture
Cell differentiation
Collagen
Collagenase
Differentiation
Digestion
DNA methylation
Electrophysiology
Explants
Flow cytometry
Heart
horse
Incubation
mesenchymal stem cells
Mesenchyme
Nkx2.5 protein
Pluripotency
preadipocytes
Rabbits
Stem cell transplantation
Stem cells
Tissue culture
title Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Sources%20and%20Methods%20for%20the%20Isolation%20of%20Equine%20Adipose%20Tissue-Derived%20Stromal/Stem%20Cells%20and%20Preliminary%20Results%20on%20Their%20Reaction%20to%20Incubation%20with%205-Azacytidine&rft.jtitle=Animals%20(Basel)&rft.au=Trachsel,%20Dagmar%20S.&rft.date=2022-08-11&rft.volume=12&rft.issue=16&rft.spage=2049&rft.pages=2049-&rft.issn=2076-2615&rft.eissn=2076-2615&rft_id=info:doi/10.3390/ani12162049&rft_dat=%3Cproquest_doaj_%3E2707601493%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706094984&rft_id=info:pmid/36009640&rfr_iscdi=true