Loading…
Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine
Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardi...
Saved in:
Published in: | Animals (Basel) 2022-08, Vol.12 (16), p.2049 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3 |
container_end_page | |
container_issue | 16 |
container_start_page | 2049 |
container_title | Animals (Basel) |
container_volume | 12 |
creator | Trachsel, Dagmar S. Stage, Hannah J. Rausch, Sebastian Trappe, Susanne Söllig, Katharina Sponder, Gerhard Merle, Roswitha Aschenbach, Jörg R. Gehlen, Heidrun |
description | Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed. |
doi_str_mv | 10.3390/ani12162049 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95</doaj_id><sourcerecordid>2707601493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</originalsourceid><addsrcrecordid>eNpdkl9rFDEQwBdRbKl98gsEfBFk2_zP5UU4zqoHFcU7n0M2O9vLsbu5JtlK_Vh-wqbdIq15SZj8-M0wM1X1luAzxjQ-t6MnlEiKuX5RHVOsZE0lES-fvI-q05T2uBwlGBHkdXXEJMZacnxc_V2F4WCjT2FEoUObMEUHCdmxRd8g70KbUBciyjtA6xR6m_0MXlxPfgS0bP0hJEBbn9IE9SeI_gZatMkxDLY_32QY0Ar6fjb-iND7wY823qKfkKY-J1R02x34WALWPdhzQOvRTc2c67fPOyTq5R_rbrNvS9I31avO9glOH--T6tfni-3qa335_ct6tbysHRc010ouLKNMa9vYhmBQ0DZC0EZIojAVuONaKalsu3AdY7RTfNE2SlBsgUpgjp1U69nbBrs3h-iHUrcJ1puHQIhXxsbsXQ_GYeFwwxrXcMk1K0rXUbsgWnNOWy2K6-PsOkzNAK2DMUfbP5M-_xn9zlyFG6M5LgpcBO8fBTFcT5CyGXxypbN2hDAlQ1UZNyYleUHf_Yfuy1TH0qp7SmLN9YIX6sNMuRhSitD9K4Zgc79a5slqsTuhesHT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706094984</pqid></control><display><type>article</type><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><source>PubMed Central(OA)</source><source>ProQuest - Publicly Available Content Database</source><creator>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</creator><creatorcontrib>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</creatorcontrib><description>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</description><identifier>ISSN: 2076-2615</identifier><identifier>EISSN: 2076-2615</identifier><identifier>DOI: 10.3390/ani12162049</identifier><identifier>PMID: 36009640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adipose tissue ; adipose tissue differentiation ; Azacytidine ; Body fat ; Cardiology ; cardiomyocyte-like cells ; Cardiomyocytes ; CD29 antigen ; CD34 antigen ; CD44 antigen ; CD45 antigen ; Cell culture ; Cell differentiation ; Collagen ; Collagenase ; Differentiation ; Digestion ; DNA methylation ; Electrophysiology ; Explants ; Flow cytometry ; Heart ; horse ; Incubation ; mesenchymal stem cells ; Mesenchyme ; Nkx2.5 protein ; Pluripotency ; preadipocytes ; Rabbits ; Stem cell transplantation ; Stem cells ; Tissue culture</subject><ispartof>Animals (Basel), 2022-08, Vol.12 (16), p.2049</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</citedby><cites>FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</cites><orcidid>0000-0002-8688-2926 ; 0000-0001-5080-1007 ; 0000-0001-5451-4232 ; 0000-0001-5103-8402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706094984/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706094984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Trachsel, Dagmar S.</creatorcontrib><creatorcontrib>Stage, Hannah J.</creatorcontrib><creatorcontrib>Rausch, Sebastian</creatorcontrib><creatorcontrib>Trappe, Susanne</creatorcontrib><creatorcontrib>Söllig, Katharina</creatorcontrib><creatorcontrib>Sponder, Gerhard</creatorcontrib><creatorcontrib>Merle, Roswitha</creatorcontrib><creatorcontrib>Aschenbach, Jörg R.</creatorcontrib><creatorcontrib>Gehlen, Heidrun</creatorcontrib><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><title>Animals (Basel)</title><description>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</description><subject>Adipose tissue</subject><subject>adipose tissue differentiation</subject><subject>Azacytidine</subject><subject>Body fat</subject><subject>Cardiology</subject><subject>cardiomyocyte-like cells</subject><subject>Cardiomyocytes</subject><subject>CD29 antigen</subject><subject>CD34 antigen</subject><subject>CD44 antigen</subject><subject>CD45 antigen</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Collagen</subject><subject>Collagenase</subject><subject>Differentiation</subject><subject>Digestion</subject><subject>DNA methylation</subject><subject>Electrophysiology</subject><subject>Explants</subject><subject>Flow cytometry</subject><subject>Heart</subject><subject>horse</subject><subject>Incubation</subject><subject>mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Nkx2.5 protein</subject><subject>Pluripotency</subject><subject>preadipocytes</subject><subject>Rabbits</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue culture</subject><issn>2076-2615</issn><issn>2076-2615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl9rFDEQwBdRbKl98gsEfBFk2_zP5UU4zqoHFcU7n0M2O9vLsbu5JtlK_Vh-wqbdIq15SZj8-M0wM1X1luAzxjQ-t6MnlEiKuX5RHVOsZE0lES-fvI-q05T2uBwlGBHkdXXEJMZacnxc_V2F4WCjT2FEoUObMEUHCdmxRd8g70KbUBciyjtA6xR6m_0MXlxPfgS0bP0hJEBbn9IE9SeI_gZatMkxDLY_32QY0Ar6fjb-iND7wY823qKfkKY-J1R02x34WALWPdhzQOvRTc2c67fPOyTq5R_rbrNvS9I31avO9glOH--T6tfni-3qa335_ct6tbysHRc010ouLKNMa9vYhmBQ0DZC0EZIojAVuONaKalsu3AdY7RTfNE2SlBsgUpgjp1U69nbBrs3h-iHUrcJ1puHQIhXxsbsXQ_GYeFwwxrXcMk1K0rXUbsgWnNOWy2K6-PsOkzNAK2DMUfbP5M-_xn9zlyFG6M5LgpcBO8fBTFcT5CyGXxypbN2hDAlQ1UZNyYleUHf_Yfuy1TH0qp7SmLN9YIX6sNMuRhSitD9K4Zgc79a5slqsTuhesHT</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Trachsel, Dagmar S.</creator><creator>Stage, Hannah J.</creator><creator>Rausch, Sebastian</creator><creator>Trappe, Susanne</creator><creator>Söllig, Katharina</creator><creator>Sponder, Gerhard</creator><creator>Merle, Roswitha</creator><creator>Aschenbach, Jörg R.</creator><creator>Gehlen, Heidrun</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8688-2926</orcidid><orcidid>https://orcid.org/0000-0001-5080-1007</orcidid><orcidid>https://orcid.org/0000-0001-5451-4232</orcidid><orcidid>https://orcid.org/0000-0001-5103-8402</orcidid></search><sort><creationdate>20220811</creationdate><title>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</title><author>Trachsel, Dagmar S. ; Stage, Hannah J. ; Rausch, Sebastian ; Trappe, Susanne ; Söllig, Katharina ; Sponder, Gerhard ; Merle, Roswitha ; Aschenbach, Jörg R. ; Gehlen, Heidrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adipose tissue</topic><topic>adipose tissue differentiation</topic><topic>Azacytidine</topic><topic>Body fat</topic><topic>Cardiology</topic><topic>cardiomyocyte-like cells</topic><topic>Cardiomyocytes</topic><topic>CD29 antigen</topic><topic>CD34 antigen</topic><topic>CD44 antigen</topic><topic>CD45 antigen</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Collagen</topic><topic>Collagenase</topic><topic>Differentiation</topic><topic>Digestion</topic><topic>DNA methylation</topic><topic>Electrophysiology</topic><topic>Explants</topic><topic>Flow cytometry</topic><topic>Heart</topic><topic>horse</topic><topic>Incubation</topic><topic>mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Nkx2.5 protein</topic><topic>Pluripotency</topic><topic>preadipocytes</topic><topic>Rabbits</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trachsel, Dagmar S.</creatorcontrib><creatorcontrib>Stage, Hannah J.</creatorcontrib><creatorcontrib>Rausch, Sebastian</creatorcontrib><creatorcontrib>Trappe, Susanne</creatorcontrib><creatorcontrib>Söllig, Katharina</creatorcontrib><creatorcontrib>Sponder, Gerhard</creatorcontrib><creatorcontrib>Merle, Roswitha</creatorcontrib><creatorcontrib>Aschenbach, Jörg R.</creatorcontrib><creatorcontrib>Gehlen, Heidrun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Animals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trachsel, Dagmar S.</au><au>Stage, Hannah J.</au><au>Rausch, Sebastian</au><au>Trappe, Susanne</au><au>Söllig, Katharina</au><au>Sponder, Gerhard</au><au>Merle, Roswitha</au><au>Aschenbach, Jörg R.</au><au>Gehlen, Heidrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine</atitle><jtitle>Animals (Basel)</jtitle><date>2022-08-11</date><risdate>2022</risdate><volume>12</volume><issue>16</issue><spage>2049</spage><pages>2049-</pages><issn>2076-2615</issn><eissn>2076-2615</eissn><abstract>Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36009640</pmid><doi>10.3390/ani12162049</doi><orcidid>https://orcid.org/0000-0002-8688-2926</orcidid><orcidid>https://orcid.org/0000-0001-5080-1007</orcidid><orcidid>https://orcid.org/0000-0001-5451-4232</orcidid><orcidid>https://orcid.org/0000-0001-5103-8402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-2615 |
ispartof | Animals (Basel), 2022-08, Vol.12 (16), p.2049 |
issn | 2076-2615 2076-2615 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c05c0b3bcb46493d8ccf2a8199442d95 |
source | PubMed Central(OA); ProQuest - Publicly Available Content Database |
subjects | Adipose tissue adipose tissue differentiation Azacytidine Body fat Cardiology cardiomyocyte-like cells Cardiomyocytes CD29 antigen CD34 antigen CD44 antigen CD45 antigen Cell culture Cell differentiation Collagen Collagenase Differentiation Digestion DNA methylation Electrophysiology Explants Flow cytometry Heart horse Incubation mesenchymal stem cells Mesenchyme Nkx2.5 protein Pluripotency preadipocytes Rabbits Stem cell transplantation Stem cells Tissue culture |
title | Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Sources%20and%20Methods%20for%20the%20Isolation%20of%20Equine%20Adipose%20Tissue-Derived%20Stromal/Stem%20Cells%20and%20Preliminary%20Results%20on%20Their%20Reaction%20to%20Incubation%20with%205-Azacytidine&rft.jtitle=Animals%20(Basel)&rft.au=Trachsel,%20Dagmar%20S.&rft.date=2022-08-11&rft.volume=12&rft.issue=16&rft.spage=2049&rft.pages=2049-&rft.issn=2076-2615&rft.eissn=2076-2615&rft_id=info:doi/10.3390/ani12162049&rft_dat=%3Cproquest_doaj_%3E2707601493%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-768a32399abab10e7edb552b56170250f497767ad8cf332f748db7520ae26e3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706094984&rft_id=info:pmid/36009640&rfr_iscdi=true |