Loading…

Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability

Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detec...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-08, Vol.14 (8), p.1283
Main Authors: Wang, Kexin, Wang, Zelong, Wu, Yuxuan, Xia, Yuan, Xun, Yuchang, Wu, Fuju, Jiao, Jing, Du, Lifang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83
cites cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83
container_end_page
container_issue 8
container_start_page 1283
container_title Atmosphere
container_volume 14
creator Wang, Kexin
Wang, Zelong
Wu, Yuxuan
Xia, Yuan
Xun, Yuchang
Wu, Fuju
Jiao, Jing
Du, Lifang
description Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.
doi_str_mv 10.3390/atmos14081283
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762481840</galeid><doaj_id>oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880</doaj_id><sourcerecordid>A762481840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</originalsourceid><addsrcrecordid>eNpVkU1v3CAQhq2olRqlOfaOlLNTvmzj48ptmkiJWjXJGc3CsMvKa1xgD_kt_bM1cVS1cGB4xfvMMFNVnxi9FqKnnyEfQ2KSKsaVOKvOOe1ELaUQ7_6JP1SXKR3osmQvuJDn1e8BRnMaIfswkeDIT0xhgskguRlPIWIyWC6PBnLG6KcdGWJIiTyiKZZUPA-YYSQ_IGZvRkzETyTvkTx4a0ckMFnyPM8YyaaUOO8xruIQjjNEn9bET3v0kXzBvIBh60efXz5W7x2MCS_fzovq-ebr03Bb33__djds7msjaZ9r1XTArGy3rrG8BcZo2wPlqpeio5Yrjk5S6IxjfVPaIyzjjqFjopEIoMRFdbdybYCDnqM_QnzRAbx-FULc6be_aUNbwa10cuuENLbZKoOWC4fWolGKLqyrlTXH8OuEKetDOMVpKV9z1bRdR6UqGa_XVztYoH5yIUcwy7Z49CZM6Pyib7qWS8WULNh6NZjS_Yjub5mM6jJ__d_8xR_uXaU4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856770488</pqid></control><display><type>article</type><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</creator><creatorcontrib>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</creatorcontrib><description>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14081283</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption cross sections ; Atmosphere ; Atmosphere, Upper ; atmospheric metal layer ; Atoms &amp; subatomic particles ; Backscatter ; Backscattering ; Composition ; Data analysis ; Data processing ; detectability ; effective backscattering cross section ; Environmental aspects ; Fluorescence ; Frequency locking ; Heavy metals ; Ions ; Iron ; Isotopes ; Lasers ; Lidar ; Lidar observations ; Mathematical analysis ; Metal particles ; Metals ; Optical properties ; Particles ; Remote sensing ; Resonance ; Resonance fluorescence ; Resonance scattering ; Scattering (Physics) ; Scattering cross sections ; Sodium ; Uncertainty ; Upper atmosphere</subject><ispartof>Atmosphere, 2023-08, Vol.14 (8), p.1283</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</citedby><cites>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</cites><orcidid>0000-0003-0885-3377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856770488/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856770488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Wang, Zelong</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><creatorcontrib>Xia, Yuan</creatorcontrib><creatorcontrib>Xun, Yuchang</creatorcontrib><creatorcontrib>Wu, Fuju</creatorcontrib><creatorcontrib>Jiao, Jing</creatorcontrib><creatorcontrib>Du, Lifang</creatorcontrib><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><title>Atmosphere</title><description>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</description><subject>Absorption cross sections</subject><subject>Atmosphere</subject><subject>Atmosphere, Upper</subject><subject>atmospheric metal layer</subject><subject>Atoms &amp; subatomic particles</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Composition</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>detectability</subject><subject>effective backscattering cross section</subject><subject>Environmental aspects</subject><subject>Fluorescence</subject><subject>Frequency locking</subject><subject>Heavy metals</subject><subject>Ions</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Lidar observations</subject><subject>Mathematical analysis</subject><subject>Metal particles</subject><subject>Metals</subject><subject>Optical properties</subject><subject>Particles</subject><subject>Remote sensing</subject><subject>Resonance</subject><subject>Resonance fluorescence</subject><subject>Resonance scattering</subject><subject>Scattering (Physics)</subject><subject>Scattering cross sections</subject><subject>Sodium</subject><subject>Uncertainty</subject><subject>Upper atmosphere</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1v3CAQhq2olRqlOfaOlLNTvmzj48ptmkiJWjXJGc3CsMvKa1xgD_kt_bM1cVS1cGB4xfvMMFNVnxi9FqKnnyEfQ2KSKsaVOKvOOe1ELaUQ7_6JP1SXKR3osmQvuJDn1e8BRnMaIfswkeDIT0xhgskguRlPIWIyWC6PBnLG6KcdGWJIiTyiKZZUPA-YYSQ_IGZvRkzETyTvkTx4a0ckMFnyPM8YyaaUOO8xruIQjjNEn9bET3v0kXzBvIBh60efXz5W7x2MCS_fzovq-ebr03Bb33__djds7msjaZ9r1XTArGy3rrG8BcZo2wPlqpeio5Yrjk5S6IxjfVPaIyzjjqFjopEIoMRFdbdybYCDnqM_QnzRAbx-FULc6be_aUNbwa10cuuENLbZKoOWC4fWolGKLqyrlTXH8OuEKetDOMVpKV9z1bRdR6UqGa_XVztYoH5yIUcwy7Z49CZM6Pyib7qWS8WULNh6NZjS_Yjub5mM6jJ__d_8xR_uXaU4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wang, Kexin</creator><creator>Wang, Zelong</creator><creator>Wu, Yuxuan</creator><creator>Xia, Yuan</creator><creator>Xun, Yuchang</creator><creator>Wu, Fuju</creator><creator>Jiao, Jing</creator><creator>Du, Lifang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0885-3377</orcidid></search><sort><creationdate>20230801</creationdate><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><author>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption cross sections</topic><topic>Atmosphere</topic><topic>Atmosphere, Upper</topic><topic>atmospheric metal layer</topic><topic>Atoms &amp; subatomic particles</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Composition</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>detectability</topic><topic>effective backscattering cross section</topic><topic>Environmental aspects</topic><topic>Fluorescence</topic><topic>Frequency locking</topic><topic>Heavy metals</topic><topic>Ions</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Lidar observations</topic><topic>Mathematical analysis</topic><topic>Metal particles</topic><topic>Metals</topic><topic>Optical properties</topic><topic>Particles</topic><topic>Remote sensing</topic><topic>Resonance</topic><topic>Resonance fluorescence</topic><topic>Resonance scattering</topic><topic>Scattering (Physics)</topic><topic>Scattering cross sections</topic><topic>Sodium</topic><topic>Uncertainty</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Wang, Zelong</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><creatorcontrib>Xia, Yuan</creatorcontrib><creatorcontrib>Xun, Yuchang</creatorcontrib><creatorcontrib>Wu, Fuju</creatorcontrib><creatorcontrib>Jiao, Jing</creatorcontrib><creatorcontrib>Du, Lifang</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kexin</au><au>Wang, Zelong</au><au>Wu, Yuxuan</au><au>Xia, Yuan</au><au>Xun, Yuchang</au><au>Wu, Fuju</au><au>Jiao, Jing</au><au>Du, Lifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</atitle><jtitle>Atmosphere</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>1283</spage><pages>1283-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14081283</doi><orcidid>https://orcid.org/0000-0003-0885-3377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-08, Vol.14 (8), p.1283
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Absorption cross sections
Atmosphere
Atmosphere, Upper
atmospheric metal layer
Atoms & subatomic particles
Backscatter
Backscattering
Composition
Data analysis
Data processing
detectability
effective backscattering cross section
Environmental aspects
Fluorescence
Frequency locking
Heavy metals
Ions
Iron
Isotopes
Lasers
Lidar
Lidar observations
Mathematical analysis
Metal particles
Metals
Optical properties
Particles
Remote sensing
Resonance
Resonance fluorescence
Resonance scattering
Scattering (Physics)
Scattering cross sections
Sodium
Uncertainty
Upper atmosphere
title Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Resonance%20Fluorescence%20Scattering%20Cross%20Sections%20of%20Metal%20Particles%20in%20the%20Middle%20and%20Upper%20Atmosphere%20and%20Comparison%20of%20Their%20Detectability&rft.jtitle=Atmosphere&rft.au=Wang,%20Kexin&rft.date=2023-08-01&rft.volume=14&rft.issue=8&rft.spage=1283&rft.pages=1283-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14081283&rft_dat=%3Cgale_doaj_%3EA762481840%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856770488&rft_id=info:pmid/&rft_galeid=A762481840&rfr_iscdi=true