Loading…
Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability
Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detec...
Saved in:
Published in: | Atmosphere 2023-08, Vol.14 (8), p.1283 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83 |
container_end_page | |
container_issue | 8 |
container_start_page | 1283 |
container_title | Atmosphere |
container_volume | 14 |
creator | Wang, Kexin Wang, Zelong Wu, Yuxuan Xia, Yuan Xun, Yuchang Wu, Fuju Jiao, Jing Du, Lifang |
description | Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system. |
doi_str_mv | 10.3390/atmos14081283 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762481840</galeid><doaj_id>oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880</doaj_id><sourcerecordid>A762481840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</originalsourceid><addsrcrecordid>eNpVkU1v3CAQhq2olRqlOfaOlLNTvmzj48ptmkiJWjXJGc3CsMvKa1xgD_kt_bM1cVS1cGB4xfvMMFNVnxi9FqKnnyEfQ2KSKsaVOKvOOe1ELaUQ7_6JP1SXKR3osmQvuJDn1e8BRnMaIfswkeDIT0xhgskguRlPIWIyWC6PBnLG6KcdGWJIiTyiKZZUPA-YYSQ_IGZvRkzETyTvkTx4a0ckMFnyPM8YyaaUOO8xruIQjjNEn9bET3v0kXzBvIBh60efXz5W7x2MCS_fzovq-ebr03Bb33__djds7msjaZ9r1XTArGy3rrG8BcZo2wPlqpeio5Yrjk5S6IxjfVPaIyzjjqFjopEIoMRFdbdybYCDnqM_QnzRAbx-FULc6be_aUNbwa10cuuENLbZKoOWC4fWolGKLqyrlTXH8OuEKetDOMVpKV9z1bRdR6UqGa_XVztYoH5yIUcwy7Z49CZM6Pyib7qWS8WULNh6NZjS_Yjub5mM6jJ__d_8xR_uXaU4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856770488</pqid></control><display><type>article</type><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</creator><creatorcontrib>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</creatorcontrib><description>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14081283</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption cross sections ; Atmosphere ; Atmosphere, Upper ; atmospheric metal layer ; Atoms & subatomic particles ; Backscatter ; Backscattering ; Composition ; Data analysis ; Data processing ; detectability ; effective backscattering cross section ; Environmental aspects ; Fluorescence ; Frequency locking ; Heavy metals ; Ions ; Iron ; Isotopes ; Lasers ; Lidar ; Lidar observations ; Mathematical analysis ; Metal particles ; Metals ; Optical properties ; Particles ; Remote sensing ; Resonance ; Resonance fluorescence ; Resonance scattering ; Scattering (Physics) ; Scattering cross sections ; Sodium ; Uncertainty ; Upper atmosphere</subject><ispartof>Atmosphere, 2023-08, Vol.14 (8), p.1283</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</citedby><cites>FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</cites><orcidid>0000-0003-0885-3377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856770488/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856770488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Wang, Zelong</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><creatorcontrib>Xia, Yuan</creatorcontrib><creatorcontrib>Xun, Yuchang</creatorcontrib><creatorcontrib>Wu, Fuju</creatorcontrib><creatorcontrib>Jiao, Jing</creatorcontrib><creatorcontrib>Du, Lifang</creatorcontrib><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><title>Atmosphere</title><description>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</description><subject>Absorption cross sections</subject><subject>Atmosphere</subject><subject>Atmosphere, Upper</subject><subject>atmospheric metal layer</subject><subject>Atoms & subatomic particles</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Composition</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>detectability</subject><subject>effective backscattering cross section</subject><subject>Environmental aspects</subject><subject>Fluorescence</subject><subject>Frequency locking</subject><subject>Heavy metals</subject><subject>Ions</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Lidar observations</subject><subject>Mathematical analysis</subject><subject>Metal particles</subject><subject>Metals</subject><subject>Optical properties</subject><subject>Particles</subject><subject>Remote sensing</subject><subject>Resonance</subject><subject>Resonance fluorescence</subject><subject>Resonance scattering</subject><subject>Scattering (Physics)</subject><subject>Scattering cross sections</subject><subject>Sodium</subject><subject>Uncertainty</subject><subject>Upper atmosphere</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1v3CAQhq2olRqlOfaOlLNTvmzj48ptmkiJWjXJGc3CsMvKa1xgD_kt_bM1cVS1cGB4xfvMMFNVnxi9FqKnnyEfQ2KSKsaVOKvOOe1ELaUQ7_6JP1SXKR3osmQvuJDn1e8BRnMaIfswkeDIT0xhgskguRlPIWIyWC6PBnLG6KcdGWJIiTyiKZZUPA-YYSQ_IGZvRkzETyTvkTx4a0ckMFnyPM8YyaaUOO8xruIQjjNEn9bET3v0kXzBvIBh60efXz5W7x2MCS_fzovq-ebr03Bb33__djds7msjaZ9r1XTArGy3rrG8BcZo2wPlqpeio5Yrjk5S6IxjfVPaIyzjjqFjopEIoMRFdbdybYCDnqM_QnzRAbx-FULc6be_aUNbwa10cuuENLbZKoOWC4fWolGKLqyrlTXH8OuEKetDOMVpKV9z1bRdR6UqGa_XVztYoH5yIUcwy7Z49CZM6Pyib7qWS8WULNh6NZjS_Yjub5mM6jJ__d_8xR_uXaU4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wang, Kexin</creator><creator>Wang, Zelong</creator><creator>Wu, Yuxuan</creator><creator>Xia, Yuan</creator><creator>Xun, Yuchang</creator><creator>Wu, Fuju</creator><creator>Jiao, Jing</creator><creator>Du, Lifang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0885-3377</orcidid></search><sort><creationdate>20230801</creationdate><title>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</title><author>Wang, Kexin ; Wang, Zelong ; Wu, Yuxuan ; Xia, Yuan ; Xun, Yuchang ; Wu, Fuju ; Jiao, Jing ; Du, Lifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption cross sections</topic><topic>Atmosphere</topic><topic>Atmosphere, Upper</topic><topic>atmospheric metal layer</topic><topic>Atoms & subatomic particles</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Composition</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>detectability</topic><topic>effective backscattering cross section</topic><topic>Environmental aspects</topic><topic>Fluorescence</topic><topic>Frequency locking</topic><topic>Heavy metals</topic><topic>Ions</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Lidar observations</topic><topic>Mathematical analysis</topic><topic>Metal particles</topic><topic>Metals</topic><topic>Optical properties</topic><topic>Particles</topic><topic>Remote sensing</topic><topic>Resonance</topic><topic>Resonance fluorescence</topic><topic>Resonance scattering</topic><topic>Scattering (Physics)</topic><topic>Scattering cross sections</topic><topic>Sodium</topic><topic>Uncertainty</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Wang, Zelong</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><creatorcontrib>Xia, Yuan</creatorcontrib><creatorcontrib>Xun, Yuchang</creatorcontrib><creatorcontrib>Wu, Fuju</creatorcontrib><creatorcontrib>Jiao, Jing</creatorcontrib><creatorcontrib>Du, Lifang</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kexin</au><au>Wang, Zelong</au><au>Wu, Yuxuan</au><au>Xia, Yuan</au><au>Xun, Yuchang</au><au>Wu, Fuju</au><au>Jiao, Jing</au><au>Du, Lifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability</atitle><jtitle>Atmosphere</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>1283</spage><pages>1283-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14081283</doi><orcidid>https://orcid.org/0000-0003-0885-3377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2023-08, Vol.14 (8), p.1283 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c0632d4f4bf34cd5b8ced23feddec880 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Absorption cross sections Atmosphere Atmosphere, Upper atmospheric metal layer Atoms & subatomic particles Backscatter Backscattering Composition Data analysis Data processing detectability effective backscattering cross section Environmental aspects Fluorescence Frequency locking Heavy metals Ions Iron Isotopes Lasers Lidar Lidar observations Mathematical analysis Metal particles Metals Optical properties Particles Remote sensing Resonance Resonance fluorescence Resonance scattering Scattering (Physics) Scattering cross sections Sodium Uncertainty Upper atmosphere |
title | Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Resonance%20Fluorescence%20Scattering%20Cross%20Sections%20of%20Metal%20Particles%20in%20the%20Middle%20and%20Upper%20Atmosphere%20and%20Comparison%20of%20Their%20Detectability&rft.jtitle=Atmosphere&rft.au=Wang,%20Kexin&rft.date=2023-08-01&rft.volume=14&rft.issue=8&rft.spage=1283&rft.pages=1283-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14081283&rft_dat=%3Cgale_doaj_%3EA762481840%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-857a1d46bf5d26a11069a02894370d282ef40a7cf19508123d12f1ef1354eaa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856770488&rft_id=info:pmid/&rft_galeid=A762481840&rfr_iscdi=true |