Loading…

A Time-Efficient Approach for Modelling and Simulation of Aggregated Multiple Photovoltaic Microinverters

This paper presents a time-efficient modeling and simulation strategy for aggregated microinverters in large-scale photovoltaic systems. As photovoltaic microinverter systems are typically comprised of multiple power electronic converters, a suitable modeling and simulation strategy that can be used...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2017-03, Vol.10 (4), p.465
Main Authors: Park, Sungmin, Chen, Weiqiang, Bazzi, Ali, Park, Sung-Yeul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a time-efficient modeling and simulation strategy for aggregated microinverters in large-scale photovoltaic systems. As photovoltaic microinverter systems are typically comprised of multiple power electronic converters, a suitable modeling and simulation strategy that can be used for rapid prototyping is required. Dynamic models incorporating switching action may induce significant computational burdens and long simulation durations. This paper introduces a single-matrix-form approach using the average model of a basic microinverter with two power stages consisting of a dc-dc and dc-ac converter. The proposed methodology using a common or intermediate source between two average models of cascaded converters to find the overall average model is introduced and is applicable to many other converter topologies and combinations. It provides better flexibility and simplicity when investigating various power topologies in system-level studies of microinverter and other power electronic systems. A 200 W prototype microinverter is tested to verify the proposed average and dynamic models. Furthermore, MATLAB/Simulink (2010a, Mathworks, Natick, MA, USA) is used to show the improved simulation speed and maintained accuracy of the multiple microinverter configurations when the derived average model is compared to a dynamic switching simulation model.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10040465