Loading…

Using Hazard and Surrogate Functions for Understanding Memory and Forgetting

The retention of human memory is a process that can be understood from a hazard-function perspective. Hazard is the conditional probability of a state change at time t given that the state change did not yet occur. After reviewing the underlying mathematical results of hazard functions in general, t...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2022-12, Vol.2 (4), p.518-546
Main Author: Chechile, Richard A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3
cites cdi_FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3
container_end_page 546
container_issue 4
container_start_page 518
container_title AppliedMath
container_volume 2
creator Chechile, Richard A.
description The retention of human memory is a process that can be understood from a hazard-function perspective. Hazard is the conditional probability of a state change at time t given that the state change did not yet occur. After reviewing the underlying mathematical results of hazard functions in general, there is an analysis of the hazard properties associated with nine theories of memory that emerged from psychological science. Five theories predict strictly monotonically decreasing hazard whereas the other four theories predict a peaked-shaped hazard function that rises initially to a peak and then decreases for longer time periods. Thus, the behavior of hazard shortly after the initial encoding is the critical difference among the theories. Several theorems provide a basis to explore hazard for the initial time period after encoding in terms of a more practical surrogate function that is linked to the behavior of the hazard function. Evidence for a peak-shaped hazard function is provided and a case is made for one particular psychological theory of memory that posits that memory encoding produces two redundant representations that have different hazard properties. One memory representation has increasing hazard while the other representation has decreasing hazard.
doi_str_mv 10.3390/appliedmath2040031
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c09b0831739649908a05cbd5a645d457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c09b0831739649908a05cbd5a645d457</doaj_id><sourcerecordid>oai_doaj_org_article_c09b0831739649908a05cbd5a645d457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3</originalsourceid><addsrcrecordid>eNplkN1KAzEQhYMoWGpfwKt9gdXZJJufSynWFipeaK_DbJKtW9pNSdKL-vRuWxFBGJjhMOdw-Ai5r-CBMQ2PuN9vO-92mD8pcABWXZERFZKVWoO-_nPfkklKGwCgqpZMqhFZrlLXr4s5fmF0BfaueD_EGNaYfTE79DZ3oU9FG2Kx6p2PKQ8vJ8Or34V4PBtmIa59zoN6R25a3CY_-dljspo9f0zn5fLtZTF9WpaWKpnLphaeMRAerHZYKeVpC9A4DlzbZhjpBAVRKS85F4CcyxrAAmNKcI6ejcnikusCbsw-djuMRxOwM2dh6GMw5s5uvbGgG1CskkwLPiBQCLVtXI2C144PEMaEXrJsDClF3_7mVWBOeM1_vOwbZLJvjA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Hazard and Surrogate Functions for Understanding Memory and Forgetting</title><source>DOAJ Directory of Open Access Journals</source><creator>Chechile, Richard A.</creator><creatorcontrib>Chechile, Richard A.</creatorcontrib><description>The retention of human memory is a process that can be understood from a hazard-function perspective. Hazard is the conditional probability of a state change at time t given that the state change did not yet occur. After reviewing the underlying mathematical results of hazard functions in general, there is an analysis of the hazard properties associated with nine theories of memory that emerged from psychological science. Five theories predict strictly monotonically decreasing hazard whereas the other four theories predict a peaked-shaped hazard function that rises initially to a peak and then decreases for longer time periods. Thus, the behavior of hazard shortly after the initial encoding is the critical difference among the theories. Several theorems provide a basis to explore hazard for the initial time period after encoding in terms of a more practical surrogate function that is linked to the behavior of the hazard function. Evidence for a peak-shaped hazard function is provided and a case is made for one particular psychological theory of memory that posits that memory encoding produces two redundant representations that have different hazard properties. One memory representation has increasing hazard while the other representation has decreasing hazard.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2040031</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>hazard functions ; mathematical psychology ; mathematics of human forgetting ; memory hazard functions ; memory modeling ; modeling forgetting</subject><ispartof>AppliedMath, 2022-12, Vol.2 (4), p.518-546</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3</citedby><cites>FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Chechile, Richard A.</creatorcontrib><title>Using Hazard and Surrogate Functions for Understanding Memory and Forgetting</title><title>AppliedMath</title><description>The retention of human memory is a process that can be understood from a hazard-function perspective. Hazard is the conditional probability of a state change at time t given that the state change did not yet occur. After reviewing the underlying mathematical results of hazard functions in general, there is an analysis of the hazard properties associated with nine theories of memory that emerged from psychological science. Five theories predict strictly monotonically decreasing hazard whereas the other four theories predict a peaked-shaped hazard function that rises initially to a peak and then decreases for longer time periods. Thus, the behavior of hazard shortly after the initial encoding is the critical difference among the theories. Several theorems provide a basis to explore hazard for the initial time period after encoding in terms of a more practical surrogate function that is linked to the behavior of the hazard function. Evidence for a peak-shaped hazard function is provided and a case is made for one particular psychological theory of memory that posits that memory encoding produces two redundant representations that have different hazard properties. One memory representation has increasing hazard while the other representation has decreasing hazard.</description><subject>hazard functions</subject><subject>mathematical psychology</subject><subject>mathematics of human forgetting</subject><subject>memory hazard functions</subject><subject>memory modeling</subject><subject>modeling forgetting</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkN1KAzEQhYMoWGpfwKt9gdXZJJufSynWFipeaK_DbJKtW9pNSdKL-vRuWxFBGJjhMOdw-Ai5r-CBMQ2PuN9vO-92mD8pcABWXZERFZKVWoO-_nPfkklKGwCgqpZMqhFZrlLXr4s5fmF0BfaueD_EGNaYfTE79DZ3oU9FG2Kx6p2PKQ8vJ8Or34V4PBtmIa59zoN6R25a3CY_-dljspo9f0zn5fLtZTF9WpaWKpnLphaeMRAerHZYKeVpC9A4DlzbZhjpBAVRKS85F4CcyxrAAmNKcI6ejcnikusCbsw-djuMRxOwM2dh6GMw5s5uvbGgG1CskkwLPiBQCLVtXI2C144PEMaEXrJsDClF3_7mVWBOeM1_vOwbZLJvjA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chechile, Richard A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Using Hazard and Surrogate Functions for Understanding Memory and Forgetting</title><author>Chechile, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>hazard functions</topic><topic>mathematical psychology</topic><topic>mathematics of human forgetting</topic><topic>memory hazard functions</topic><topic>memory modeling</topic><topic>modeling forgetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chechile, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chechile, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Hazard and Surrogate Functions for Understanding Memory and Forgetting</atitle><jtitle>AppliedMath</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>518</spage><epage>546</epage><pages>518-546</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>The retention of human memory is a process that can be understood from a hazard-function perspective. Hazard is the conditional probability of a state change at time t given that the state change did not yet occur. After reviewing the underlying mathematical results of hazard functions in general, there is an analysis of the hazard properties associated with nine theories of memory that emerged from psychological science. Five theories predict strictly monotonically decreasing hazard whereas the other four theories predict a peaked-shaped hazard function that rises initially to a peak and then decreases for longer time periods. Thus, the behavior of hazard shortly after the initial encoding is the critical difference among the theories. Several theorems provide a basis to explore hazard for the initial time period after encoding in terms of a more practical surrogate function that is linked to the behavior of the hazard function. Evidence for a peak-shaped hazard function is provided and a case is made for one particular psychological theory of memory that posits that memory encoding produces two redundant representations that have different hazard properties. One memory representation has increasing hazard while the other representation has decreasing hazard.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath2040031</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2022-12, Vol.2 (4), p.518-546
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c09b0831739649908a05cbd5a645d457
source DOAJ Directory of Open Access Journals
subjects hazard functions
mathematical psychology
mathematics of human forgetting
memory hazard functions
memory modeling
modeling forgetting
title Using Hazard and Surrogate Functions for Understanding Memory and Forgetting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Hazard%20and%20Surrogate%20Functions%20for%20Understanding%20Memory%20and%20Forgetting&rft.jtitle=AppliedMath&rft.au=Chechile,%20Richard%20A.&rft.date=2022-12-01&rft.volume=2&rft.issue=4&rft.spage=518&rft.epage=546&rft.pages=518-546&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2040031&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_c09b0831739649908a05cbd5a645d457%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-b56e3306e0c9da188e2f00bd4049cb9cb7d620618e74460a447500c0338644ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true