Loading…
Flow affects the structural and mechanical properties of the fibrin network in plasma clots
The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in throm...
Saved in:
Published in: | Journal of materials science. Materials in medicine 2024-01, Vol.35 (1), p.8-10, Article 8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 8 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 35 |
creator | Eyisoylu, Hande Hazekamp, Emma D. Cruts, Janneke Koenderink, Gijsje H. de Maat, Moniek P. M. |
description | The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.
Graphical Abstract |
doi_str_mv | 10.1007/s10856-024-06775-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f</doaj_id><sourcerecordid>2919744829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</originalsourceid><addsrcrecordid>eNp9ks9v1TAMxysEYmPwD3BAlbhwKTi_2uSE0MRg0iQucOIQuYn7Xh9tU5KWif-e8DrGxoFTnPjjrx3bRfGcwWsG0LxJDLSqK-CygrppVMUeFKdMNaKSWuiHd-yT4klKBwCQRqnHxYnQXCtWN6fF14shXJfYdeSWVC57KtMSV7esEYcSJ1-O5PY49S5f5xhmiktPqQzdke36NvZTOdFyHeK3MpvzgGnE0g1hSU-LRx0OiZ7dnGfFl4v3n88_VlefPlyev7uqnJJsqZxgdde2nphEaLzy6Bsy2EowShOBd8KYTlCNhEo3JAnQC-4dISjBUZwVl5uuD3iwc-xHjD9twN4eH0LcWcxlu4GsA6xbphSXzEsgZ6BtpTCihVp5rbus9XbTmtd2pJxjWnIn7one90z93u7CD5tnwaWu66zw6kYhhu8rpcWOfXI0DDhRWJPlhplGSs1NRl_-gx7CGqfcq0xxMJozLTPFN8rFkFKk7rYaBvb3IthtEWxeBHtcBMty0Iu7_7gN-TP5DIgNSNk17Sj-zf0f2V_6K8A7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920982184</pqid></control><display><type>article</type><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</creator><creatorcontrib>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</creatorcontrib><description>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.
Graphical Abstract</description><identifier>ISSN: 1573-4838</identifier><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-024-06775-1</identifier><identifier>PMID: 38285167</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomaterials ; Biomedical Engineering and Bioengineering ; Blood clots ; Blood flow ; Bulk density ; Ceramics ; Chemistry and Materials Science ; Composites ; Confocal microscopy ; Embolization ; Engineering and Nano-engineering Approaches for Medical Devices ; Fibers ; Fibrin ; Fluid flow ; Glass ; Humans ; In vivo methods and tests ; Materials Science ; Mechanical properties ; Microscopy ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Natural Materials ; Plasma ; Polymer Sciences ; Pore size ; Regenerative Medicine/Tissue Engineering ; Scanning electron microscopy ; Stiffness ; Surfaces and Interfaces ; Thin Films ; Thrombosis</subject><ispartof>Journal of materials science. Materials in medicine, 2024-01, Vol.35 (1), p.8-10, Article 8</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</citedby><cites>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</cites><orcidid>0000-0001-7749-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38285167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyisoylu, Hande</creatorcontrib><creatorcontrib>Hazekamp, Emma D.</creatorcontrib><creatorcontrib>Cruts, Janneke</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>de Maat, Moniek P. M.</creatorcontrib><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.
Graphical Abstract</description><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Blood clots</subject><subject>Blood flow</subject><subject>Bulk density</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Confocal microscopy</subject><subject>Embolization</subject><subject>Engineering and Nano-engineering Approaches for Medical Devices</subject><subject>Fibers</subject><subject>Fibrin</subject><subject>Fluid flow</subject><subject>Glass</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural Materials</subject><subject>Plasma</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Scanning electron microscopy</subject><subject>Stiffness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thrombosis</subject><issn>1573-4838</issn><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ks9v1TAMxysEYmPwD3BAlbhwKTi_2uSE0MRg0iQucOIQuYn7Xh9tU5KWif-e8DrGxoFTnPjjrx3bRfGcwWsG0LxJDLSqK-CygrppVMUeFKdMNaKSWuiHd-yT4klKBwCQRqnHxYnQXCtWN6fF14shXJfYdeSWVC57KtMSV7esEYcSJ1-O5PY49S5f5xhmiktPqQzdke36NvZTOdFyHeK3MpvzgGnE0g1hSU-LRx0OiZ7dnGfFl4v3n88_VlefPlyev7uqnJJsqZxgdde2nphEaLzy6Bsy2EowShOBd8KYTlCNhEo3JAnQC-4dISjBUZwVl5uuD3iwc-xHjD9twN4eH0LcWcxlu4GsA6xbphSXzEsgZ6BtpTCihVp5rbus9XbTmtd2pJxjWnIn7one90z93u7CD5tnwaWu66zw6kYhhu8rpcWOfXI0DDhRWJPlhplGSs1NRl_-gx7CGqfcq0xxMJozLTPFN8rFkFKk7rYaBvb3IthtEWxeBHtcBMty0Iu7_7gN-TP5DIgNSNk17Sj-zf0f2V_6K8A7</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Eyisoylu, Hande</creator><creator>Hazekamp, Emma D.</creator><creator>Cruts, Janneke</creator><creator>Koenderink, Gijsje H.</creator><creator>de Maat, Moniek P. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7749-334X</orcidid></search><sort><creationdate>20240129</creationdate><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><author>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Blood clots</topic><topic>Blood flow</topic><topic>Bulk density</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Confocal microscopy</topic><topic>Embolization</topic><topic>Engineering and Nano-engineering Approaches for Medical Devices</topic><topic>Fibers</topic><topic>Fibrin</topic><topic>Fluid flow</topic><topic>Glass</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural Materials</topic><topic>Plasma</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Scanning electron microscopy</topic><topic>Stiffness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyisoylu, Hande</creatorcontrib><creatorcontrib>Hazekamp, Emma D.</creatorcontrib><creatorcontrib>Cruts, Janneke</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>de Maat, Moniek P. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyisoylu, Hande</au><au>Hazekamp, Emma D.</au><au>Cruts, Janneke</au><au>Koenderink, Gijsje H.</au><au>de Maat, Moniek P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><spage>8</spage><epage>10</epage><pages>8-10</pages><artnum>8</artnum><issn>1573-4838</issn><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38285167</pmid><doi>10.1007/s10856-024-06775-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7749-334X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-4838 |
ispartof | Journal of materials science. Materials in medicine, 2024-01, Vol.35 (1), p.8-10, Article 8 |
issn | 1573-4838 0957-4530 1573-4838 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f |
source | Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Biomaterials Biomedical Engineering and Bioengineering Blood clots Blood flow Bulk density Ceramics Chemistry and Materials Science Composites Confocal microscopy Embolization Engineering and Nano-engineering Approaches for Medical Devices Fibers Fibrin Fluid flow Glass Humans In vivo methods and tests Materials Science Mechanical properties Microscopy Microscopy, Confocal Microscopy, Electron, Scanning Natural Materials Plasma Polymer Sciences Pore size Regenerative Medicine/Tissue Engineering Scanning electron microscopy Stiffness Surfaces and Interfaces Thin Films Thrombosis |
title | Flow affects the structural and mechanical properties of the fibrin network in plasma clots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20affects%20the%20structural%20and%20mechanical%20properties%20of%20the%20fibrin%20network%20in%20plasma%20clots&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Eyisoylu,%20Hande&rft.date=2024-01-29&rft.volume=35&rft.issue=1&rft.spage=8&rft.epage=10&rft.pages=8-10&rft.artnum=8&rft.issn=1573-4838&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-024-06775-1&rft_dat=%3Cproquest_doaj_%3E2919744829%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920982184&rft_id=info:pmid/38285167&rfr_iscdi=true |