Loading…

Flow affects the structural and mechanical properties of the fibrin network in plasma clots

The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in throm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in medicine 2024-01, Vol.35 (1), p.8-10, Article 8
Main Authors: Eyisoylu, Hande, Hazekamp, Emma D., Cruts, Janneke, Koenderink, Gijsje H., de Maat, Moniek P. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3
cites cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3
container_end_page 10
container_issue 1
container_start_page 8
container_title Journal of materials science. Materials in medicine
container_volume 35
creator Eyisoylu, Hande
Hazekamp, Emma D.
Cruts, Janneke
Koenderink, Gijsje H.
de Maat, Moniek P. M.
description The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization. Graphical Abstract
doi_str_mv 10.1007/s10856-024-06775-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f</doaj_id><sourcerecordid>2919744829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</originalsourceid><addsrcrecordid>eNp9ks9v1TAMxysEYmPwD3BAlbhwKTi_2uSE0MRg0iQucOIQuYn7Xh9tU5KWif-e8DrGxoFTnPjjrx3bRfGcwWsG0LxJDLSqK-CygrppVMUeFKdMNaKSWuiHd-yT4klKBwCQRqnHxYnQXCtWN6fF14shXJfYdeSWVC57KtMSV7esEYcSJ1-O5PY49S5f5xhmiktPqQzdke36NvZTOdFyHeK3MpvzgGnE0g1hSU-LRx0OiZ7dnGfFl4v3n88_VlefPlyev7uqnJJsqZxgdde2nphEaLzy6Bsy2EowShOBd8KYTlCNhEo3JAnQC-4dISjBUZwVl5uuD3iwc-xHjD9twN4eH0LcWcxlu4GsA6xbphSXzEsgZ6BtpTCihVp5rbus9XbTmtd2pJxjWnIn7one90z93u7CD5tnwaWu66zw6kYhhu8rpcWOfXI0DDhRWJPlhplGSs1NRl_-gx7CGqfcq0xxMJozLTPFN8rFkFKk7rYaBvb3IthtEWxeBHtcBMty0Iu7_7gN-TP5DIgNSNk17Sj-zf0f2V_6K8A7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920982184</pqid></control><display><type>article</type><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</creator><creatorcontrib>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</creatorcontrib><description>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization. Graphical Abstract</description><identifier>ISSN: 1573-4838</identifier><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-024-06775-1</identifier><identifier>PMID: 38285167</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomaterials ; Biomedical Engineering and Bioengineering ; Blood clots ; Blood flow ; Bulk density ; Ceramics ; Chemistry and Materials Science ; Composites ; Confocal microscopy ; Embolization ; Engineering and Nano-engineering Approaches for Medical Devices ; Fibers ; Fibrin ; Fluid flow ; Glass ; Humans ; In vivo methods and tests ; Materials Science ; Mechanical properties ; Microscopy ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Natural Materials ; Plasma ; Polymer Sciences ; Pore size ; Regenerative Medicine/Tissue Engineering ; Scanning electron microscopy ; Stiffness ; Surfaces and Interfaces ; Thin Films ; Thrombosis</subject><ispartof>Journal of materials science. Materials in medicine, 2024-01, Vol.35 (1), p.8-10, Article 8</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</citedby><cites>FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</cites><orcidid>0000-0001-7749-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38285167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyisoylu, Hande</creatorcontrib><creatorcontrib>Hazekamp, Emma D.</creatorcontrib><creatorcontrib>Cruts, Janneke</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>de Maat, Moniek P. M.</creatorcontrib><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization. Graphical Abstract</description><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Blood clots</subject><subject>Blood flow</subject><subject>Bulk density</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Confocal microscopy</subject><subject>Embolization</subject><subject>Engineering and Nano-engineering Approaches for Medical Devices</subject><subject>Fibers</subject><subject>Fibrin</subject><subject>Fluid flow</subject><subject>Glass</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural Materials</subject><subject>Plasma</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Scanning electron microscopy</subject><subject>Stiffness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thrombosis</subject><issn>1573-4838</issn><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ks9v1TAMxysEYmPwD3BAlbhwKTi_2uSE0MRg0iQucOIQuYn7Xh9tU5KWif-e8DrGxoFTnPjjrx3bRfGcwWsG0LxJDLSqK-CygrppVMUeFKdMNaKSWuiHd-yT4klKBwCQRqnHxYnQXCtWN6fF14shXJfYdeSWVC57KtMSV7esEYcSJ1-O5PY49S5f5xhmiktPqQzdke36NvZTOdFyHeK3MpvzgGnE0g1hSU-LRx0OiZ7dnGfFl4v3n88_VlefPlyev7uqnJJsqZxgdde2nphEaLzy6Bsy2EowShOBd8KYTlCNhEo3JAnQC-4dISjBUZwVl5uuD3iwc-xHjD9twN4eH0LcWcxlu4GsA6xbphSXzEsgZ6BtpTCihVp5rbus9XbTmtd2pJxjWnIn7one90z93u7CD5tnwaWu66zw6kYhhu8rpcWOfXI0DDhRWJPlhplGSs1NRl_-gx7CGqfcq0xxMJozLTPFN8rFkFKk7rYaBvb3IthtEWxeBHtcBMty0Iu7_7gN-TP5DIgNSNk17Sj-zf0f2V_6K8A7</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Eyisoylu, Hande</creator><creator>Hazekamp, Emma D.</creator><creator>Cruts, Janneke</creator><creator>Koenderink, Gijsje H.</creator><creator>de Maat, Moniek P. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7749-334X</orcidid></search><sort><creationdate>20240129</creationdate><title>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</title><author>Eyisoylu, Hande ; Hazekamp, Emma D. ; Cruts, Janneke ; Koenderink, Gijsje H. ; de Maat, Moniek P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Blood clots</topic><topic>Blood flow</topic><topic>Bulk density</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Confocal microscopy</topic><topic>Embolization</topic><topic>Engineering and Nano-engineering Approaches for Medical Devices</topic><topic>Fibers</topic><topic>Fibrin</topic><topic>Fluid flow</topic><topic>Glass</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural Materials</topic><topic>Plasma</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Scanning electron microscopy</topic><topic>Stiffness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyisoylu, Hande</creatorcontrib><creatorcontrib>Hazekamp, Emma D.</creatorcontrib><creatorcontrib>Cruts, Janneke</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>de Maat, Moniek P. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyisoylu, Hande</au><au>Hazekamp, Emma D.</au><au>Cruts, Janneke</au><au>Koenderink, Gijsje H.</au><au>de Maat, Moniek P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow affects the structural and mechanical properties of the fibrin network in plasma clots</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><spage>8</spage><epage>10</epage><pages>8-10</pages><artnum>8</artnum><issn>1573-4838</issn><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38285167</pmid><doi>10.1007/s10856-024-06775-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7749-334X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-4838
ispartof Journal of materials science. Materials in medicine, 2024-01, Vol.35 (1), p.8-10, Article 8
issn 1573-4838
0957-4530
1573-4838
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c0a6b155241d40ec90bb4393b065d88f
source Springer Nature - SpringerLink Journals - Fully Open Access
subjects Biomaterials
Biomedical Engineering and Bioengineering
Blood clots
Blood flow
Bulk density
Ceramics
Chemistry and Materials Science
Composites
Confocal microscopy
Embolization
Engineering and Nano-engineering Approaches for Medical Devices
Fibers
Fibrin
Fluid flow
Glass
Humans
In vivo methods and tests
Materials Science
Mechanical properties
Microscopy
Microscopy, Confocal
Microscopy, Electron, Scanning
Natural Materials
Plasma
Polymer Sciences
Pore size
Regenerative Medicine/Tissue Engineering
Scanning electron microscopy
Stiffness
Surfaces and Interfaces
Thin Films
Thrombosis
title Flow affects the structural and mechanical properties of the fibrin network in plasma clots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20affects%20the%20structural%20and%20mechanical%20properties%20of%20the%20fibrin%20network%20in%20plasma%20clots&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Eyisoylu,%20Hande&rft.date=2024-01-29&rft.volume=35&rft.issue=1&rft.spage=8&rft.epage=10&rft.pages=8-10&rft.artnum=8&rft.issn=1573-4838&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-024-06775-1&rft_dat=%3Cproquest_doaj_%3E2919744829%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-c316fbbde14a07d5dad7e9ab40958ee0dc399f3e6aea587e4e0ad32dcea0532a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920982184&rft_id=info:pmid/38285167&rfr_iscdi=true