Loading…

Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome

Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the prote...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2020-07, Vol.32 (2), p.107896-107896, Article 107896
Main Authors: Biggar, Kyle K., Charih, Francois, Liu, Huadong, Ruiz-Blanco, Yasser B., Stalker, Leanne, Chopra, Anand, Connolly, Justin, Adhikary, Hemanta, Frensemier, Kristin, Hoekstra, Matthew, Galka, Marek, Fang, Qi, Wynder, Christopher, Stanford, William L., Green, James R., Li, Shawn S.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63
cites cdi_FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63
container_end_page 107896
container_issue 2
container_start_page 107896
container_title Cell reports (Cambridge)
container_volume 32
creator Biggar, Kyle K.
Charih, Francois
Liu, Huadong
Ruiz-Blanco, Yasser B.
Stalker, Leanne
Chopra, Anand
Connolly, Justin
Adhikary, Hemanta
Frensemier, Kristin
Hoekstra, Matthew
Galka, Marek
Fang, Qi
Wynder, Christopher
Stanford, William L.
Green, James R.
Li, Shawn S.-C.
description Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease. [Display omitted] •MethylSight is used to identify candidate methylation sites in the human proteome•45 histone methylation sites are uncovered by MethylSight and validated•The H2B-K43 methylation site is demethylated by KDM5B Biggar et al. develop an algorithm to identify lysine methylation sites and use this resource to provide insight into the potential of the methyllysine proteome. The results also validate 45 new histone methylation sites by targeted mass spectrometry and show that one of these sites, H2B-K43me2, is a substrate of the KDM5B demethylase.
doi_str_mv 10.1016/j.celrep.2020.107896
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0b58f3b2a5e4e07bf74498035653f50</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720308779</els_id><doaj_id>oai_doaj_org_article_c0b58f3b2a5e4e07bf74498035653f50</doaj_id><sourcerecordid>2424441557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63</originalsourceid><addsrcrecordid>eNp9UctuEzEUtRCIVqV_gNAs2Uzwa2zPBgkqoBGp2gWsLY99TR1NxsF2QPkI_hmnk1SwqTf2vT4P-x6EXhO8IJiId-uFhTHBdkExPbSk6sUzdE4pIS2hXD7_53yGLnNe47oEJqTnL9EZo0Ioyuk5-nOXYoG4gfZ3cNDcJXDBlhCnJvpmtc9hguYGyv1-NA_dFRiXmxKbpYOpBB-sOaGv6cevnP2HNpNrbndlrCqVdF_1q1mlmfEIG2eH0yNeoRfejBkuj_sF-v7507er63Z1-2V59WHVWi55aY3x1BlirOrt0AnOe9_3hIP0YhiUB1ZL3w9WEK8YVbbeWCaJk85JJZ1gF2g567po1nqbwsakvY4m6IdGTD-0SSXYEbTFQ6c8G6jpgAOWg5fVT2HWiY75Dlett7PWNsWfO8hFb0Ku6YxmgrjLuo6Zc066TlYon6E2xZwT-EdrgvUhV73Wc676kKuec620N0eH3bAB90g6pVgB72cA1Jn9CpB0tgEmW7NMYEv9VHja4S86v7ci</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424441557</pqid></control><display><type>article</type><title>Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Biggar, Kyle K. ; Charih, Francois ; Liu, Huadong ; Ruiz-Blanco, Yasser B. ; Stalker, Leanne ; Chopra, Anand ; Connolly, Justin ; Adhikary, Hemanta ; Frensemier, Kristin ; Hoekstra, Matthew ; Galka, Marek ; Fang, Qi ; Wynder, Christopher ; Stanford, William L. ; Green, James R. ; Li, Shawn S.-C.</creator><creatorcontrib>Biggar, Kyle K. ; Charih, Francois ; Liu, Huadong ; Ruiz-Blanco, Yasser B. ; Stalker, Leanne ; Chopra, Anand ; Connolly, Justin ; Adhikary, Hemanta ; Frensemier, Kristin ; Hoekstra, Matthew ; Galka, Marek ; Fang, Qi ; Wynder, Christopher ; Stanford, William L. ; Green, James R. ; Li, Shawn S.-C.</creatorcontrib><description>Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease. [Display omitted] •MethylSight is used to identify candidate methylation sites in the human proteome•45 histone methylation sites are uncovered by MethylSight and validated•The H2B-K43 methylation site is demethylated by KDM5B Biggar et al. develop an algorithm to identify lysine methylation sites and use this resource to provide insight into the potential of the methyllysine proteome. The results also validate 45 new histone methylation sites by targeted mass spectrometry and show that one of these sites, H2B-K43me2, is a substrate of the KDM5B demethylase.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.107896</identifier><identifier>PMID: 32668242</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Amino Acid Sequence ; Animals ; Cell Differentiation ; Demethylation ; Female ; histone H1 ; histone H2B ; histone marks ; Histones - chemistry ; Histones - metabolism ; Humans ; Jumonji Domain-Containing Histone Demethylases - metabolism ; KDM5b ; Lysine - metabolism ; lysine methylation ; machine learning ; MCF-7 Cells ; Methylation ; methyllysine proteome ; Mice ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; Neurons - cytology ; non-histone methylation ; Nuclear Proteins - metabolism ; Proteome - metabolism ; Repressor Proteins - metabolism ; Software ; Substrate Specificity</subject><ispartof>Cell reports (Cambridge), 2020-07, Vol.32 (2), p.107896-107896, Article 107896</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63</citedby><cites>FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63</cites><orcidid>0000-0002-6039-2355 ; 0000-0002-1715-8379 ; 0000-0002-7931-8921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32668242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biggar, Kyle K.</creatorcontrib><creatorcontrib>Charih, Francois</creatorcontrib><creatorcontrib>Liu, Huadong</creatorcontrib><creatorcontrib>Ruiz-Blanco, Yasser B.</creatorcontrib><creatorcontrib>Stalker, Leanne</creatorcontrib><creatorcontrib>Chopra, Anand</creatorcontrib><creatorcontrib>Connolly, Justin</creatorcontrib><creatorcontrib>Adhikary, Hemanta</creatorcontrib><creatorcontrib>Frensemier, Kristin</creatorcontrib><creatorcontrib>Hoekstra, Matthew</creatorcontrib><creatorcontrib>Galka, Marek</creatorcontrib><creatorcontrib>Fang, Qi</creatorcontrib><creatorcontrib>Wynder, Christopher</creatorcontrib><creatorcontrib>Stanford, William L.</creatorcontrib><creatorcontrib>Green, James R.</creatorcontrib><creatorcontrib>Li, Shawn S.-C.</creatorcontrib><title>Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease. [Display omitted] •MethylSight is used to identify candidate methylation sites in the human proteome•45 histone methylation sites are uncovered by MethylSight and validated•The H2B-K43 methylation site is demethylated by KDM5B Biggar et al. develop an algorithm to identify lysine methylation sites and use this resource to provide insight into the potential of the methyllysine proteome. The results also validate 45 new histone methylation sites by targeted mass spectrometry and show that one of these sites, H2B-K43me2, is a substrate of the KDM5B demethylase.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Demethylation</subject><subject>Female</subject><subject>histone H1</subject><subject>histone H2B</subject><subject>histone marks</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>KDM5b</subject><subject>Lysine - metabolism</subject><subject>lysine methylation</subject><subject>machine learning</subject><subject>MCF-7 Cells</subject><subject>Methylation</subject><subject>methyllysine proteome</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Neurons - cytology</subject><subject>non-histone methylation</subject><subject>Nuclear Proteins - metabolism</subject><subject>Proteome - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Software</subject><subject>Substrate Specificity</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctuEzEUtRCIVqV_gNAs2Uzwa2zPBgkqoBGp2gWsLY99TR1NxsF2QPkI_hmnk1SwqTf2vT4P-x6EXhO8IJiId-uFhTHBdkExPbSk6sUzdE4pIS2hXD7_53yGLnNe47oEJqTnL9EZo0Ioyuk5-nOXYoG4gfZ3cNDcJXDBlhCnJvpmtc9hguYGyv1-NA_dFRiXmxKbpYOpBB-sOaGv6cevnP2HNpNrbndlrCqVdF_1q1mlmfEIG2eH0yNeoRfejBkuj_sF-v7507er63Z1-2V59WHVWi55aY3x1BlirOrt0AnOe9_3hIP0YhiUB1ZL3w9WEK8YVbbeWCaJk85JJZ1gF2g567po1nqbwsakvY4m6IdGTD-0SSXYEbTFQ6c8G6jpgAOWg5fVT2HWiY75Dlett7PWNsWfO8hFb0Ku6YxmgrjLuo6Zc066TlYon6E2xZwT-EdrgvUhV73Wc676kKuec620N0eH3bAB90g6pVgB72cA1Jn9CpB0tgEmW7NMYEv9VHja4S86v7ci</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Biggar, Kyle K.</creator><creator>Charih, Francois</creator><creator>Liu, Huadong</creator><creator>Ruiz-Blanco, Yasser B.</creator><creator>Stalker, Leanne</creator><creator>Chopra, Anand</creator><creator>Connolly, Justin</creator><creator>Adhikary, Hemanta</creator><creator>Frensemier, Kristin</creator><creator>Hoekstra, Matthew</creator><creator>Galka, Marek</creator><creator>Fang, Qi</creator><creator>Wynder, Christopher</creator><creator>Stanford, William L.</creator><creator>Green, James R.</creator><creator>Li, Shawn S.-C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6039-2355</orcidid><orcidid>https://orcid.org/0000-0002-1715-8379</orcidid><orcidid>https://orcid.org/0000-0002-7931-8921</orcidid></search><sort><creationdate>20200714</creationdate><title>Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome</title><author>Biggar, Kyle K. ; Charih, Francois ; Liu, Huadong ; Ruiz-Blanco, Yasser B. ; Stalker, Leanne ; Chopra, Anand ; Connolly, Justin ; Adhikary, Hemanta ; Frensemier, Kristin ; Hoekstra, Matthew ; Galka, Marek ; Fang, Qi ; Wynder, Christopher ; Stanford, William L. ; Green, James R. ; Li, Shawn S.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Demethylation</topic><topic>Female</topic><topic>histone H1</topic><topic>histone H2B</topic><topic>histone marks</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>KDM5b</topic><topic>Lysine - metabolism</topic><topic>lysine methylation</topic><topic>machine learning</topic><topic>MCF-7 Cells</topic><topic>Methylation</topic><topic>methyllysine proteome</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Neurons - cytology</topic><topic>non-histone methylation</topic><topic>Nuclear Proteins - metabolism</topic><topic>Proteome - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Software</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biggar, Kyle K.</creatorcontrib><creatorcontrib>Charih, Francois</creatorcontrib><creatorcontrib>Liu, Huadong</creatorcontrib><creatorcontrib>Ruiz-Blanco, Yasser B.</creatorcontrib><creatorcontrib>Stalker, Leanne</creatorcontrib><creatorcontrib>Chopra, Anand</creatorcontrib><creatorcontrib>Connolly, Justin</creatorcontrib><creatorcontrib>Adhikary, Hemanta</creatorcontrib><creatorcontrib>Frensemier, Kristin</creatorcontrib><creatorcontrib>Hoekstra, Matthew</creatorcontrib><creatorcontrib>Galka, Marek</creatorcontrib><creatorcontrib>Fang, Qi</creatorcontrib><creatorcontrib>Wynder, Christopher</creatorcontrib><creatorcontrib>Stanford, William L.</creatorcontrib><creatorcontrib>Green, James R.</creatorcontrib><creatorcontrib>Li, Shawn S.-C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biggar, Kyle K.</au><au>Charih, Francois</au><au>Liu, Huadong</au><au>Ruiz-Blanco, Yasser B.</au><au>Stalker, Leanne</au><au>Chopra, Anand</au><au>Connolly, Justin</au><au>Adhikary, Hemanta</au><au>Frensemier, Kristin</au><au>Hoekstra, Matthew</au><au>Galka, Marek</au><au>Fang, Qi</au><au>Wynder, Christopher</au><au>Stanford, William L.</au><au>Green, James R.</au><au>Li, Shawn S.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>32</volume><issue>2</issue><spage>107896</spage><epage>107896</epage><pages>107896-107896</pages><artnum>107896</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease. [Display omitted] •MethylSight is used to identify candidate methylation sites in the human proteome•45 histone methylation sites are uncovered by MethylSight and validated•The H2B-K43 methylation site is demethylated by KDM5B Biggar et al. develop an algorithm to identify lysine methylation sites and use this resource to provide insight into the potential of the methyllysine proteome. The results also validate 45 new histone methylation sites by targeted mass spectrometry and show that one of these sites, H2B-K43me2, is a substrate of the KDM5B demethylase.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32668242</pmid><doi>10.1016/j.celrep.2020.107896</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6039-2355</orcidid><orcidid>https://orcid.org/0000-0002-1715-8379</orcidid><orcidid>https://orcid.org/0000-0002-7931-8921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-07, Vol.32 (2), p.107896-107896, Article 107896
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c0b58f3b2a5e4e07bf74498035653f50
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Algorithms
Amino Acid Sequence
Animals
Cell Differentiation
Demethylation
Female
histone H1
histone H2B
histone marks
Histones - chemistry
Histones - metabolism
Humans
Jumonji Domain-Containing Histone Demethylases - metabolism
KDM5b
Lysine - metabolism
lysine methylation
machine learning
MCF-7 Cells
Methylation
methyllysine proteome
Mice
Mouse Embryonic Stem Cells - cytology
Mouse Embryonic Stem Cells - metabolism
Neurons - cytology
non-histone methylation
Nuclear Proteins - metabolism
Proteome - metabolism
Repressor Proteins - metabolism
Software
Substrate Specificity
title Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome-wide%20Prediction%20of%20Lysine%20Methylation%20Leads%20to%20Identification%20of%20H2BK43%20Methylation%20and%20Outlines%20the%20Potential%20Methyllysine%20Proteome&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Biggar,%20Kyle%20K.&rft.date=2020-07-14&rft.volume=32&rft.issue=2&rft.spage=107896&rft.epage=107896&rft.pages=107896-107896&rft.artnum=107896&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.107896&rft_dat=%3Cproquest_doaj_%3E2424441557%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-aaf2da1ac89cb56449f9914e7f6bb8fe3f99f9bc61f8328c4e7c371d7dd787d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424441557&rft_id=info:pmid/32668242&rfr_iscdi=true