Loading…

Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation

In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically locate...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-11, Vol.17 (21), p.5452
Main Authors: Mack, Patrick, de Koster, Markus, Lehnen, Patrick, Waffenschmidt, Eberhard, Stadler, Ingo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893
container_end_page
container_issue 21
container_start_page 5452
container_title Energies (Basel)
container_volume 17
creator Mack, Patrick
de Koster, Markus
Lehnen, Patrick
Waffenschmidt, Eberhard
Stadler, Ingo
description In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.
doi_str_mv 10.3390/en17215452
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815345151</galeid><doaj_id>oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f</doaj_id><sourcerecordid>A815345151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</originalsourceid><addsrcrecordid>eNplUc1OHDEMHiGQioBLn2AkbpWGJuNJJnNcKH8SaqkK58jjSWi2uxNIMtrujYfgCXmSBrYqlYil2P5kf_4sF8VHzo4AOvbZjLytuWhEvVXs8q6TFWctbP8XfygOYpyz_AA4AOwWv6_9yoTy-4QLl9blj4TJlKcxuSUm58fS-lB-cTEF10-vwHlwQyyPMZqhzOn1z3V0FKvZCoMpv5op4CK7tPLhV3x-fLrAsPSjo3fM-8WOxUU0B3_9XnF7dnpzclFdfTu_PJldVVSrLlW9aiRYiUJC2ynFle2FlaRqWVMDQ9MTthxbyMuRkIwUF33NCGzej1B1sFdcbngHj3N9H_L4sNYenX4FfLjTGJKjhdHEiAtomqaT-WfUCRyGWghL0JPlNnMdbrjug3-YTEx67qcwZvkaeFYkRSNZrjraVN1hJnWj9SkgZRvM0pEfjXUZn6mXWYILnhs-bRoo-BiDsf9kcqZfLqvfLgt_ACiZlgE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126265460</pqid></control><display><type>article</type><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><source>Publicly Available Content Database</source><creator>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</creator><creatorcontrib>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</creatorcontrib><description>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17215452</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Comparative analysis ; Electric power systems ; Electric vehicles ; Germany ; Global positioning systems ; GPS ; harmonic state estimation ; Infrastructure ; Iterative methods ; Methods ; Monitoring systems ; Neural networks ; Physics ; physics-aware neural networks ; power quality state estimation ; pruned artificial neural network</subject><ispartof>Energies (Basel), 2024-11, Vol.17 (21), p.5452</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</cites><orcidid>0009-0008-5136-1347 ; 0009-0000-7673-4519 ; 0000-0001-9254-4221 ; 0000-0002-9689-8518 ; 0009-0004-9156-4297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126265460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126265460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Mack, Patrick</creatorcontrib><creatorcontrib>de Koster, Markus</creatorcontrib><creatorcontrib>Lehnen, Patrick</creatorcontrib><creatorcontrib>Waffenschmidt, Eberhard</creatorcontrib><creatorcontrib>Stadler, Ingo</creatorcontrib><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><title>Energies (Basel)</title><description>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Electric power systems</subject><subject>Electric vehicles</subject><subject>Germany</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>harmonic state estimation</subject><subject>Infrastructure</subject><subject>Iterative methods</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Physics</subject><subject>physics-aware neural networks</subject><subject>power quality state estimation</subject><subject>pruned artificial neural network</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUc1OHDEMHiGQioBLn2AkbpWGJuNJJnNcKH8SaqkK58jjSWi2uxNIMtrujYfgCXmSBrYqlYil2P5kf_4sF8VHzo4AOvbZjLytuWhEvVXs8q6TFWctbP8XfygOYpyz_AA4AOwWv6_9yoTy-4QLl9blj4TJlKcxuSUm58fS-lB-cTEF10-vwHlwQyyPMZqhzOn1z3V0FKvZCoMpv5op4CK7tPLhV3x-fLrAsPSjo3fM-8WOxUU0B3_9XnF7dnpzclFdfTu_PJldVVSrLlW9aiRYiUJC2ynFle2FlaRqWVMDQ9MTthxbyMuRkIwUF33NCGzej1B1sFdcbngHj3N9H_L4sNYenX4FfLjTGJKjhdHEiAtomqaT-WfUCRyGWghL0JPlNnMdbrjug3-YTEx67qcwZvkaeFYkRSNZrjraVN1hJnWj9SkgZRvM0pEfjXUZn6mXWYILnhs-bRoo-BiDsf9kcqZfLqvfLgt_ACiZlgE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mack, Patrick</creator><creator>de Koster, Markus</creator><creator>Lehnen, Patrick</creator><creator>Waffenschmidt, Eberhard</creator><creator>Stadler, Ingo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5136-1347</orcidid><orcidid>https://orcid.org/0009-0000-7673-4519</orcidid><orcidid>https://orcid.org/0000-0001-9254-4221</orcidid><orcidid>https://orcid.org/0000-0002-9689-8518</orcidid><orcidid>https://orcid.org/0009-0004-9156-4297</orcidid></search><sort><creationdate>20241101</creationdate><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><author>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Electric power systems</topic><topic>Electric vehicles</topic><topic>Germany</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>harmonic state estimation</topic><topic>Infrastructure</topic><topic>Iterative methods</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Physics</topic><topic>physics-aware neural networks</topic><topic>power quality state estimation</topic><topic>pruned artificial neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mack, Patrick</creatorcontrib><creatorcontrib>de Koster, Markus</creatorcontrib><creatorcontrib>Lehnen, Patrick</creatorcontrib><creatorcontrib>Waffenschmidt, Eberhard</creatorcontrib><creatorcontrib>Stadler, Ingo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mack, Patrick</au><au>de Koster, Markus</au><au>Lehnen, Patrick</au><au>Waffenschmidt, Eberhard</au><au>Stadler, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</atitle><jtitle>Energies (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5452</spage><pages>5452-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en17215452</doi><orcidid>https://orcid.org/0009-0008-5136-1347</orcidid><orcidid>https://orcid.org/0009-0000-7673-4519</orcidid><orcidid>https://orcid.org/0000-0001-9254-4221</orcidid><orcidid>https://orcid.org/0000-0002-9689-8518</orcidid><orcidid>https://orcid.org/0009-0004-9156-4297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2024-11, Vol.17 (21), p.5452
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f
source Publicly Available Content Database
subjects Algorithms
Comparative analysis
Electric power systems
Electric vehicles
Germany
Global positioning systems
GPS
harmonic state estimation
Infrastructure
Iterative methods
Methods
Monitoring systems
Neural networks
Physics
physics-aware neural networks
power quality state estimation
pruned artificial neural network
title Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Quality%20State%20Estimation%20for%20Distribution%20Grids%20Based%20on%20Physics-Aware%20Neural%20Networks%E2%80%94Harmonic%20State%20Estimation&rft.jtitle=Energies%20(Basel)&rft.au=Mack,%20Patrick&rft.date=2024-11-01&rft.volume=17&rft.issue=21&rft.spage=5452&rft.pages=5452-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17215452&rft_dat=%3Cgale_doaj_%3EA815345151%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126265460&rft_id=info:pmid/&rft_galeid=A815345151&rfr_iscdi=true