Loading…
Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation
In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically locate...
Saved in:
Published in: | Energies (Basel) 2024-11, Vol.17 (21), p.5452 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893 |
container_end_page | |
container_issue | 21 |
container_start_page | 5452 |
container_title | Energies (Basel) |
container_volume | 17 |
creator | Mack, Patrick de Koster, Markus Lehnen, Patrick Waffenschmidt, Eberhard Stadler, Ingo |
description | In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20. |
doi_str_mv | 10.3390/en17215452 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815345151</galeid><doaj_id>oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f</doaj_id><sourcerecordid>A815345151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</originalsourceid><addsrcrecordid>eNplUc1OHDEMHiGQioBLn2AkbpWGJuNJJnNcKH8SaqkK58jjSWi2uxNIMtrujYfgCXmSBrYqlYil2P5kf_4sF8VHzo4AOvbZjLytuWhEvVXs8q6TFWctbP8XfygOYpyz_AA4AOwWv6_9yoTy-4QLl9blj4TJlKcxuSUm58fS-lB-cTEF10-vwHlwQyyPMZqhzOn1z3V0FKvZCoMpv5op4CK7tPLhV3x-fLrAsPSjo3fM-8WOxUU0B3_9XnF7dnpzclFdfTu_PJldVVSrLlW9aiRYiUJC2ynFle2FlaRqWVMDQ9MTthxbyMuRkIwUF33NCGzej1B1sFdcbngHj3N9H_L4sNYenX4FfLjTGJKjhdHEiAtomqaT-WfUCRyGWghL0JPlNnMdbrjug3-YTEx67qcwZvkaeFYkRSNZrjraVN1hJnWj9SkgZRvM0pEfjXUZn6mXWYILnhs-bRoo-BiDsf9kcqZfLqvfLgt_ACiZlgE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126265460</pqid></control><display><type>article</type><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><source>Publicly Available Content Database</source><creator>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</creator><creatorcontrib>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</creatorcontrib><description>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17215452</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Comparative analysis ; Electric power systems ; Electric vehicles ; Germany ; Global positioning systems ; GPS ; harmonic state estimation ; Infrastructure ; Iterative methods ; Methods ; Monitoring systems ; Neural networks ; Physics ; physics-aware neural networks ; power quality state estimation ; pruned artificial neural network</subject><ispartof>Energies (Basel), 2024-11, Vol.17 (21), p.5452</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</cites><orcidid>0009-0008-5136-1347 ; 0009-0000-7673-4519 ; 0000-0001-9254-4221 ; 0000-0002-9689-8518 ; 0009-0004-9156-4297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126265460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126265460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Mack, Patrick</creatorcontrib><creatorcontrib>de Koster, Markus</creatorcontrib><creatorcontrib>Lehnen, Patrick</creatorcontrib><creatorcontrib>Waffenschmidt, Eberhard</creatorcontrib><creatorcontrib>Stadler, Ingo</creatorcontrib><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><title>Energies (Basel)</title><description>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Electric power systems</subject><subject>Electric vehicles</subject><subject>Germany</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>harmonic state estimation</subject><subject>Infrastructure</subject><subject>Iterative methods</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Physics</subject><subject>physics-aware neural networks</subject><subject>power quality state estimation</subject><subject>pruned artificial neural network</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUc1OHDEMHiGQioBLn2AkbpWGJuNJJnNcKH8SaqkK58jjSWi2uxNIMtrujYfgCXmSBrYqlYil2P5kf_4sF8VHzo4AOvbZjLytuWhEvVXs8q6TFWctbP8XfygOYpyz_AA4AOwWv6_9yoTy-4QLl9blj4TJlKcxuSUm58fS-lB-cTEF10-vwHlwQyyPMZqhzOn1z3V0FKvZCoMpv5op4CK7tPLhV3x-fLrAsPSjo3fM-8WOxUU0B3_9XnF7dnpzclFdfTu_PJldVVSrLlW9aiRYiUJC2ynFle2FlaRqWVMDQ9MTthxbyMuRkIwUF33NCGzej1B1sFdcbngHj3N9H_L4sNYenX4FfLjTGJKjhdHEiAtomqaT-WfUCRyGWghL0JPlNnMdbrjug3-YTEx67qcwZvkaeFYkRSNZrjraVN1hJnWj9SkgZRvM0pEfjXUZn6mXWYILnhs-bRoo-BiDsf9kcqZfLqvfLgt_ACiZlgE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mack, Patrick</creator><creator>de Koster, Markus</creator><creator>Lehnen, Patrick</creator><creator>Waffenschmidt, Eberhard</creator><creator>Stadler, Ingo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5136-1347</orcidid><orcidid>https://orcid.org/0009-0000-7673-4519</orcidid><orcidid>https://orcid.org/0000-0001-9254-4221</orcidid><orcidid>https://orcid.org/0000-0002-9689-8518</orcidid><orcidid>https://orcid.org/0009-0004-9156-4297</orcidid></search><sort><creationdate>20241101</creationdate><title>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</title><author>Mack, Patrick ; de Koster, Markus ; Lehnen, Patrick ; Waffenschmidt, Eberhard ; Stadler, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Electric power systems</topic><topic>Electric vehicles</topic><topic>Germany</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>harmonic state estimation</topic><topic>Infrastructure</topic><topic>Iterative methods</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Physics</topic><topic>physics-aware neural networks</topic><topic>power quality state estimation</topic><topic>pruned artificial neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mack, Patrick</creatorcontrib><creatorcontrib>de Koster, Markus</creatorcontrib><creatorcontrib>Lehnen, Patrick</creatorcontrib><creatorcontrib>Waffenschmidt, Eberhard</creatorcontrib><creatorcontrib>Stadler, Ingo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mack, Patrick</au><au>de Koster, Markus</au><au>Lehnen, Patrick</au><au>Waffenschmidt, Eberhard</au><au>Stadler, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation</atitle><jtitle>Energies (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5452</spage><pages>5452-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en17215452</doi><orcidid>https://orcid.org/0009-0008-5136-1347</orcidid><orcidid>https://orcid.org/0009-0000-7673-4519</orcidid><orcidid>https://orcid.org/0000-0001-9254-4221</orcidid><orcidid>https://orcid.org/0000-0002-9689-8518</orcidid><orcidid>https://orcid.org/0009-0004-9156-4297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2024-11, Vol.17 (21), p.5452 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c0c153444963440c95add255fc3bcf1f |
source | Publicly Available Content Database |
subjects | Algorithms Comparative analysis Electric power systems Electric vehicles Germany Global positioning systems GPS harmonic state estimation Infrastructure Iterative methods Methods Monitoring systems Neural networks Physics physics-aware neural networks power quality state estimation pruned artificial neural network |
title | Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Quality%20State%20Estimation%20for%20Distribution%20Grids%20Based%20on%20Physics-Aware%20Neural%20Networks%E2%80%94Harmonic%20State%20Estimation&rft.jtitle=Energies%20(Basel)&rft.au=Mack,%20Patrick&rft.date=2024-11-01&rft.volume=17&rft.issue=21&rft.spage=5452&rft.pages=5452-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17215452&rft_dat=%3Cgale_doaj_%3EA815345151%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-b8463f6a563798818fb5f6c8262c43d4bca71a73073c560c815b20c3f313ca893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126265460&rft_id=info:pmid/&rft_galeid=A815345151&rfr_iscdi=true |