Loading…
2D Numerical Analysis of Prefabricated Vertical Drains Using Different Matching Methods
A full-scale embankment on soft clays improved with prefabricated vertical drains (PVDs) have to be analyzed in 3D conditions due to a great number of vertical drains under an embankment. However, 3D analysis is very complex, time-consuming, and needs a powerful computer. Therefore, axisymmetric ver...
Saved in:
Published in: | Applied sciences 2024-06, Vol.14 (12), p.4970 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A full-scale embankment on soft clays improved with prefabricated vertical drains (PVDs) have to be analyzed in 3D conditions due to a great number of vertical drains under an embankment. However, 3D analysis is very complex, time-consuming, and needs a powerful computer. Therefore, axisymmetric vertical drains have to be converted into equivalent plane-strain conditions for 2D analysis. Different matching approaches based on unit cell concept have been developed in the literature and the matching can be achieved by modifying the drain distance and/or soil permeability according with relatively simple instructions. This paper investigates verification of three different matching approaches to be used in the numerical analysis of full-scale embankment built on multiple vertical drains. The elasto-plastic soft soil model was used in the numerical analysis, and the results are compared with the laboratory and field measurements. The results of numerical analysis demonstrate that the matching methods are in extremely good agreement with the measurements if the effect of both the smear zone and discharge capacity are taken into consideration. It is seen that these methods provide practical solutions and important advantages to geotechnical engineers. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14124970 |