Loading…

Optimal Virtual Battery Model for Aggregating Storage-Like Resources with Network Constraints

A virtual battery (VB) provides a succinct interface for aggregating distributed storage-like resources (SLR) to interact with a utility-level system. To overcome the drawbacks of existing VB models, including conservatism and neglecting network constraints, this paper optimizes the power and energy...

Full description

Saved in:
Bibliographic Details
Published in:CSEE Journal of Power and Energy Systems 2024-07, Vol.10 (4), p.1843-1847
Main Authors: Zhenfei Tan, Ao Yu, Haiwang Zhong, Xianfeng Zhang, Qing Xia, Chongqing Kang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A virtual battery (VB) provides a succinct interface for aggregating distributed storage-like resources (SLR) to interact with a utility-level system. To overcome the drawbacks of existing VB models, including conservatism and neglecting network constraints, this paper optimizes the power and energy parameters of VB to enlarge its flexibility region. An optimal VB is identified by a robust optimization problem with decision-dependent uncertainty. An algorithm based on the Benders decomposition is developed to solve this problem. The proposed method yields the largest VB satisfying constraints of both network and SLRs. Case studies verify the superiority of the optimal VB in terms of security guarantee and less conservatism.
ISSN:2096-0042
2096-0042
DOI:10.17775/CSEEJPES.2022.04090