Loading…
EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa
Little is known about if and how circular RNAs (circRNAs) are involved in skeletal muscle atrophy. Here a conserved circular RNA Damage‐specific DNA binding protein 1 (circDdb1), derived from the host gene encoding Damage‐specific DNA binding protein 1 (DDB1), as a mechanism of muscle atrophy is ide...
Saved in:
Published in: | Advanced science 2024-12, Vol.11 (45), p.e2406986-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4151-52bf5330be927a159445de2e0372379cb1665c3edb5044aa5c51f12c839e4d7e3 |
container_end_page | n/a |
container_issue | 45 |
container_start_page | e2406986 |
container_title | Advanced science |
container_volume | 11 |
creator | Zhu, Xiaolan Yang, Tingting Zheng, Yongjun Nie, Qiumeng Chen, Jingying Li, Qian Ren, Xinyi Yin, Xiaohang Wang, Siqi Yan, Yuwei Liu, Zhengyu Wu, Ming Lu, Dongchao Yu, Yan Chen, Lei Chatterjee, Emeli Li, Guoping Cretoiu, Dragos Bowen, T Scott Li, Jin Xiao, Junjie |
description | Little is known about if and how circular RNAs (circRNAs) are involved in skeletal muscle atrophy. Here a conserved circular RNA Damage‐specific DNA binding protein 1 (circDdb1), derived from the host gene encoding Damage‐specific DNA binding protein 1 (DDB1), as a mechanism of muscle atrophy is identified. circDdb1 expression is markedly increased in a variety of muscle atrophy types in vivo and in vitro, and human aging muscle. Both in vivo and in vitro, ectopic expression of circDdb1 causes muscle atrophy. In contrast, multiple forms of muscle atrophy caused by dexamethasone, tumor necrosis factor‐alpha (TNF‐α), or angiotensin II (Ang II) in myotube cells, as well as by denervation, angiotensin II, and immobility in mice, are prevented by circDdb1 inhibition. Eukaryotic initiation factor 4A3 (EIF4A3) is identified as a regulator of circDdb1 expression in muscle atrophy, whereas circDdb1 encodes a novel protein, circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. In summary, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.
circDdb1 is increased in muscle atrophy models and aged muscle. Overexpression of circDdb1 promotes muscle atrophy, while knockdown of circDdb1 attenuates that. circDdb1 promotes muscle atrophy by encoding a novel protein circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. Collectively, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target. |
doi_str_mv | 10.1002/advs.202406986 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c14778f3e845463eb2456d416bfb14f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c14778f3e845463eb2456d416bfb14f0</doaj_id><sourcerecordid>3139104138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4151-52bf5330be927a159445de2e0372379cb1665c3edb5044aa5c51f12c839e4d7e3</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2CT6-jO0VitKURioFcdtaHvtMMtFkHOyZoOx4hD4jT8KkKVHLhpVv3_nsY_1Z9hLIGAihb63fpjEllJNCq-JJdkpBqxFTnD99MD_JzlNaEUJAMMlBPc9OmOZAiRan2WY2v-QT9vvX7bz1vUOfT-vo-sbG_PPN5G5x4UvIP8WwDh2m_EOfXIP5pIths9zl3TKGfrHMZ60Lvm4Xuc1vwhabfUGHdXs0DDeoQlr7IntW2Sbh-f14ln27nH2dXo2uP76fTyfXI8dBwEjQshKMkRI1lRaE5lx4pEiYpExqV0JRCMfQl4Jwbq1wAiqgTjGN3EtkZ9n84PXBrswm1msbdybY2txthLgwNnb10ItxwKVUFUPFBS8YlpSLwnMoyqoEXpHB9e7g2vTlGr3Dtou2eSR9fNLWS7MIWwNQgJCCDoY394YYfvSYOrOuk8OmsS2GPhkGIIlUQosBff0Pugp9bIe_GiimgXBgaqDGB8rFkFLE6vgaIGYfDrMPhzmGYyh49bCHI_43CgPAD8DPusHdf3RmcvH9i1YU2B8Q98Rl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3139104138</pqid></control><display><type>article</type><title>EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Zhu, Xiaolan ; Yang, Tingting ; Zheng, Yongjun ; Nie, Qiumeng ; Chen, Jingying ; Li, Qian ; Ren, Xinyi ; Yin, Xiaohang ; Wang, Siqi ; Yan, Yuwei ; Liu, Zhengyu ; Wu, Ming ; Lu, Dongchao ; Yu, Yan ; Chen, Lei ; Chatterjee, Emeli ; Li, Guoping ; Cretoiu, Dragos ; Bowen, T Scott ; Li, Jin ; Xiao, Junjie</creator><creatorcontrib>Zhu, Xiaolan ; Yang, Tingting ; Zheng, Yongjun ; Nie, Qiumeng ; Chen, Jingying ; Li, Qian ; Ren, Xinyi ; Yin, Xiaohang ; Wang, Siqi ; Yan, Yuwei ; Liu, Zhengyu ; Wu, Ming ; Lu, Dongchao ; Yu, Yan ; Chen, Lei ; Chatterjee, Emeli ; Li, Guoping ; Cretoiu, Dragos ; Bowen, T Scott ; Li, Jin ; Xiao, Junjie</creatorcontrib><description>Little is known about if and how circular RNAs (circRNAs) are involved in skeletal muscle atrophy. Here a conserved circular RNA Damage‐specific DNA binding protein 1 (circDdb1), derived from the host gene encoding Damage‐specific DNA binding protein 1 (DDB1), as a mechanism of muscle atrophy is identified. circDdb1 expression is markedly increased in a variety of muscle atrophy types in vivo and in vitro, and human aging muscle. Both in vivo and in vitro, ectopic expression of circDdb1 causes muscle atrophy. In contrast, multiple forms of muscle atrophy caused by dexamethasone, tumor necrosis factor‐alpha (TNF‐α), or angiotensin II (Ang II) in myotube cells, as well as by denervation, angiotensin II, and immobility in mice, are prevented by circDdb1 inhibition. Eukaryotic initiation factor 4A3 (EIF4A3) is identified as a regulator of circDdb1 expression in muscle atrophy, whereas circDdb1 encodes a novel protein, circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. In summary, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.
circDdb1 is increased in muscle atrophy models and aged muscle. Overexpression of circDdb1 promotes muscle atrophy, while knockdown of circDdb1 attenuates that. circDdb1 promotes muscle atrophy by encoding a novel protein circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. Collectively, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202406986</identifier><identifier>PMID: 39412095</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Aging ; Animals ; Atrophy ; Autophagy ; circDdb1 ; Denervation ; Disease Models, Animal ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; eEF2 ; Eukaryotic Initiation Factor-3 - genetics ; Eukaryotic Initiation Factor-3 - metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial DNA ; muscle aging ; muscle atrophy ; Muscular Atrophy - genetics ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Musculoskeletal system ; Myogenesis ; Physiology ; Protein synthesis ; Proteins ; RNA, Circular - genetics ; RNA, Circular - metabolism ; translation</subject><ispartof>Advanced science, 2024-12, Vol.11 (45), p.e2406986-n/a</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4151-52bf5330be927a159445de2e0372379cb1665c3edb5044aa5c51f12c839e4d7e3</cites><orcidid>0000-0002-9202-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3139104138/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3139104138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39412095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zheng, Yongjun</creatorcontrib><creatorcontrib>Nie, Qiumeng</creatorcontrib><creatorcontrib>Chen, Jingying</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ren, Xinyi</creatorcontrib><creatorcontrib>Yin, Xiaohang</creatorcontrib><creatorcontrib>Wang, Siqi</creatorcontrib><creatorcontrib>Yan, Yuwei</creatorcontrib><creatorcontrib>Liu, Zhengyu</creatorcontrib><creatorcontrib>Wu, Ming</creatorcontrib><creatorcontrib>Lu, Dongchao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chatterjee, Emeli</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Cretoiu, Dragos</creatorcontrib><creatorcontrib>Bowen, T Scott</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Xiao, Junjie</creatorcontrib><title>EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Little is known about if and how circular RNAs (circRNAs) are involved in skeletal muscle atrophy. Here a conserved circular RNA Damage‐specific DNA binding protein 1 (circDdb1), derived from the host gene encoding Damage‐specific DNA binding protein 1 (DDB1), as a mechanism of muscle atrophy is identified. circDdb1 expression is markedly increased in a variety of muscle atrophy types in vivo and in vitro, and human aging muscle. Both in vivo and in vitro, ectopic expression of circDdb1 causes muscle atrophy. In contrast, multiple forms of muscle atrophy caused by dexamethasone, tumor necrosis factor‐alpha (TNF‐α), or angiotensin II (Ang II) in myotube cells, as well as by denervation, angiotensin II, and immobility in mice, are prevented by circDdb1 inhibition. Eukaryotic initiation factor 4A3 (EIF4A3) is identified as a regulator of circDdb1 expression in muscle atrophy, whereas circDdb1 encodes a novel protein, circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. In summary, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.
circDdb1 is increased in muscle atrophy models and aged muscle. Overexpression of circDdb1 promotes muscle atrophy, while knockdown of circDdb1 attenuates that. circDdb1 promotes muscle atrophy by encoding a novel protein circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. Collectively, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.</description><subject>Aging</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Autophagy</subject><subject>circDdb1</subject><subject>Denervation</subject><subject>Disease Models, Animal</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>eEF2</subject><subject>Eukaryotic Initiation Factor-3 - genetics</subject><subject>Eukaryotic Initiation Factor-3 - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondrial DNA</subject><subject>muscle aging</subject><subject>muscle atrophy</subject><subject>Muscular Atrophy - genetics</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Physiology</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>RNA, Circular - genetics</subject><subject>RNA, Circular - metabolism</subject><subject>translation</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2CT6-jO0VitKURioFcdtaHvtMMtFkHOyZoOx4hD4jT8KkKVHLhpVv3_nsY_1Z9hLIGAihb63fpjEllJNCq-JJdkpBqxFTnD99MD_JzlNaEUJAMMlBPc9OmOZAiRan2WY2v-QT9vvX7bz1vUOfT-vo-sbG_PPN5G5x4UvIP8WwDh2m_EOfXIP5pIths9zl3TKGfrHMZ60Lvm4Xuc1vwhabfUGHdXs0DDeoQlr7IntW2Sbh-f14ln27nH2dXo2uP76fTyfXI8dBwEjQshKMkRI1lRaE5lx4pEiYpExqV0JRCMfQl4Jwbq1wAiqgTjGN3EtkZ9n84PXBrswm1msbdybY2txthLgwNnb10ItxwKVUFUPFBS8YlpSLwnMoyqoEXpHB9e7g2vTlGr3Dtou2eSR9fNLWS7MIWwNQgJCCDoY394YYfvSYOrOuk8OmsS2GPhkGIIlUQosBff0Pugp9bIe_GiimgXBgaqDGB8rFkFLE6vgaIGYfDrMPhzmGYyh49bCHI_43CgPAD8DPusHdf3RmcvH9i1YU2B8Q98Rl</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhu, Xiaolan</creator><creator>Yang, Tingting</creator><creator>Zheng, Yongjun</creator><creator>Nie, Qiumeng</creator><creator>Chen, Jingying</creator><creator>Li, Qian</creator><creator>Ren, Xinyi</creator><creator>Yin, Xiaohang</creator><creator>Wang, Siqi</creator><creator>Yan, Yuwei</creator><creator>Liu, Zhengyu</creator><creator>Wu, Ming</creator><creator>Lu, Dongchao</creator><creator>Yu, Yan</creator><creator>Chen, Lei</creator><creator>Chatterjee, Emeli</creator><creator>Li, Guoping</creator><creator>Cretoiu, Dragos</creator><creator>Bowen, T Scott</creator><creator>Li, Jin</creator><creator>Xiao, Junjie</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9202-0003</orcidid></search><sort><creationdate>20241201</creationdate><title>EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa</title><author>Zhu, Xiaolan ; Yang, Tingting ; Zheng, Yongjun ; Nie, Qiumeng ; Chen, Jingying ; Li, Qian ; Ren, Xinyi ; Yin, Xiaohang ; Wang, Siqi ; Yan, Yuwei ; Liu, Zhengyu ; Wu, Ming ; Lu, Dongchao ; Yu, Yan ; Chen, Lei ; Chatterjee, Emeli ; Li, Guoping ; Cretoiu, Dragos ; Bowen, T Scott ; Li, Jin ; Xiao, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4151-52bf5330be927a159445de2e0372379cb1665c3edb5044aa5c51f12c839e4d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Autophagy</topic><topic>circDdb1</topic><topic>Denervation</topic><topic>Disease Models, Animal</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>eEF2</topic><topic>Eukaryotic Initiation Factor-3 - genetics</topic><topic>Eukaryotic Initiation Factor-3 - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondrial DNA</topic><topic>muscle aging</topic><topic>muscle atrophy</topic><topic>Muscular Atrophy - genetics</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Physiology</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>RNA, Circular - genetics</topic><topic>RNA, Circular - metabolism</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zheng, Yongjun</creatorcontrib><creatorcontrib>Nie, Qiumeng</creatorcontrib><creatorcontrib>Chen, Jingying</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ren, Xinyi</creatorcontrib><creatorcontrib>Yin, Xiaohang</creatorcontrib><creatorcontrib>Wang, Siqi</creatorcontrib><creatorcontrib>Yan, Yuwei</creatorcontrib><creatorcontrib>Liu, Zhengyu</creatorcontrib><creatorcontrib>Wu, Ming</creatorcontrib><creatorcontrib>Lu, Dongchao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chatterjee, Emeli</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Cretoiu, Dragos</creatorcontrib><creatorcontrib>Bowen, T Scott</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Xiao, Junjie</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaolan</au><au>Yang, Tingting</au><au>Zheng, Yongjun</au><au>Nie, Qiumeng</au><au>Chen, Jingying</au><au>Li, Qian</au><au>Ren, Xinyi</au><au>Yin, Xiaohang</au><au>Wang, Siqi</au><au>Yan, Yuwei</au><au>Liu, Zhengyu</au><au>Wu, Ming</au><au>Lu, Dongchao</au><au>Yu, Yan</au><au>Chen, Lei</au><au>Chatterjee, Emeli</au><au>Li, Guoping</au><au>Cretoiu, Dragos</au><au>Bowen, T Scott</au><au>Li, Jin</au><au>Xiao, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>45</issue><spage>e2406986</spage><epage>n/a</epage><pages>e2406986-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Little is known about if and how circular RNAs (circRNAs) are involved in skeletal muscle atrophy. Here a conserved circular RNA Damage‐specific DNA binding protein 1 (circDdb1), derived from the host gene encoding Damage‐specific DNA binding protein 1 (DDB1), as a mechanism of muscle atrophy is identified. circDdb1 expression is markedly increased in a variety of muscle atrophy types in vivo and in vitro, and human aging muscle. Both in vivo and in vitro, ectopic expression of circDdb1 causes muscle atrophy. In contrast, multiple forms of muscle atrophy caused by dexamethasone, tumor necrosis factor‐alpha (TNF‐α), or angiotensin II (Ang II) in myotube cells, as well as by denervation, angiotensin II, and immobility in mice, are prevented by circDdb1 inhibition. Eukaryotic initiation factor 4A3 (EIF4A3) is identified as a regulator of circDdb1 expression in muscle atrophy, whereas circDdb1 encodes a novel protein, circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. In summary, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.
circDdb1 is increased in muscle atrophy models and aged muscle. Overexpression of circDdb1 promotes muscle atrophy, while knockdown of circDdb1 attenuates that. circDdb1 promotes muscle atrophy by encoding a novel protein circDdb1‐867aa. circDdb1‐867aa binds with and increases the phosphorylation level of eukaryotic elongation factor 2 (eEF2) at Thr56 to reduce protein translation and promote muscle atrophy. Collectively, these findings establish circDdb1 as a shared regulator of muscle atrophy across multiple diseases and a potential therapeutic target.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>39412095</pmid><doi>10.1002/advs.202406986</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9202-0003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-12, Vol.11 (45), p.e2406986-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c14778f3e845463eb2456d416bfb14f0 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Wiley Open Access |
subjects | Aging Animals Atrophy Autophagy circDdb1 Denervation Disease Models, Animal DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism eEF2 Eukaryotic Initiation Factor-3 - genetics Eukaryotic Initiation Factor-3 - metabolism Humans Male Mice Mice, Inbred C57BL Mitochondrial DNA muscle aging muscle atrophy Muscular Atrophy - genetics Muscular Atrophy - metabolism Muscular Atrophy - pathology Musculoskeletal system Myogenesis Physiology Protein synthesis Proteins RNA, Circular - genetics RNA, Circular - metabolism translation |
title | EIF4A3‐Induced Circular RNA CircDdb1 Promotes Muscle Atrophy through Encoding a Novel Protein CircDdb1‐867aa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EIF4A3%E2%80%90Induced%20Circular%20RNA%20CircDdb1%20Promotes%20Muscle%20Atrophy%20through%20Encoding%20a%20Novel%20Protein%20CircDdb1%E2%80%90867aa&rft.jtitle=Advanced%20science&rft.au=Zhu,%20Xiaolan&rft.date=2024-12-01&rft.volume=11&rft.issue=45&rft.spage=e2406986&rft.epage=n/a&rft.pages=e2406986-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202406986&rft_dat=%3Cproquest_doaj_%3E3139104138%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4151-52bf5330be927a159445de2e0372379cb1665c3edb5044aa5c51f12c839e4d7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3139104138&rft_id=info:pmid/39412095&rfr_iscdi=true |