Loading…

Electrotunable liquid sulfur microdroplets

Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowettin...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-01, Vol.11 (1), p.606-606, Article 606
Main Authors: Zhou, Guangmin, Yang, Ankun, Wang, Yifei, Gao, Guoping, Pei, Allen, Yu, Xiaoyun, Zhu, Yangying, Zong, Linqi, Liu, Bofei, Xu, Jinwei, Liu, Nian, Zhang, Jinsong, Li, Yanxi, Wang, Lin-Wang, Hwang, Harold Y., Brongersma, Mark L., Chu, Steven, Cui, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3
cites cdi_FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3
container_end_page 606
container_issue 1
container_start_page 606
container_title Nature communications
container_volume 11
creator Zhou, Guangmin
Yang, Ankun
Wang, Yifei
Gao, Guoping
Pei, Allen
Yu, Xiaoyun
Zhu, Yangying
Zong, Linqi
Liu, Bofei
Xu, Jinwei
Liu, Nian
Zhang, Jinsong
Li, Yanxi
Wang, Lin-Wang
Hwang, Harold Y.
Brongersma, Mark L.
Chu, Steven
Cui, Yi
description Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices. Manipulating liquids with tunable shape and optical functionalities in real time remains a great challenge. Here, the authors demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell and tune its characteristics in a fast, repeatable, and controlled manner.
doi_str_mv 10.1038/s41467-020-14438-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c14bb9eccd744263adf2b2eab2a17356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c14bb9eccd744263adf2b2eab2a17356</doaj_id><sourcerecordid>2350096521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3</originalsourceid><addsrcrecordid>eNp9kc1qFTEUxwex2FL7Ai6k6KYgY5OTr8lGkFK1UCgU9yGTObnNJXdym8wIvo3P0iczt1Nr68JsEnJ-538-_k3zhpKPlLDutHDKpWoJkJZyzroWXjQHQDhtqQL28sl7vzkqZU3qYZp2nL9q9hkQQqWWB82H84huymmaR9tHPI7hdg7DcZmjn_Pdr01wOQ05bSNO5XWz520sePRwHzbXX86_n31rL6--Xpx9vmydkGpqJXRag2fW-11nWpBOe98rcF5i7xAsKEBNleBODIOEgTIpnKrZ6Nhhc7GIDsmuzTaHjc0_TbLB3H-kvDI2T8FFNI7yvtfo3KA4B8ns4KEHtD1YqpiQVevTorWd-w0ODscp2_hM9HlkDDdmlX4YWQdQQleBd4tAKlMwxYUJ3Y1L41h3ZqikmqsddPJQJafbGctkNqE4jNGOmOZigAlCtBRAK_r-H3Sd5jzWZVaKd0opzqBSsFB196Vk9I8dU2J25pvFfFPNN_fmm13S26ezPqb8sboCbAFKDY0rzH9r_0f2N4oSujs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348777432</pqid></control><display><type>article</type><title>Electrotunable liquid sulfur microdroplets</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhou, Guangmin ; Yang, Ankun ; Wang, Yifei ; Gao, Guoping ; Pei, Allen ; Yu, Xiaoyun ; Zhu, Yangying ; Zong, Linqi ; Liu, Bofei ; Xu, Jinwei ; Liu, Nian ; Zhang, Jinsong ; Li, Yanxi ; Wang, Lin-Wang ; Hwang, Harold Y. ; Brongersma, Mark L. ; Chu, Steven ; Cui, Yi</creator><creatorcontrib>Zhou, Guangmin ; Yang, Ankun ; Wang, Yifei ; Gao, Guoping ; Pei, Allen ; Yu, Xiaoyun ; Zhu, Yangying ; Zong, Linqi ; Liu, Bofei ; Xu, Jinwei ; Liu, Nian ; Zhang, Jinsong ; Li, Yanxi ; Wang, Lin-Wang ; Hwang, Harold Y. ; Brongersma, Mark L. ; Chu, Steven ; Cui, Yi ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices. Manipulating liquids with tunable shape and optical functionalities in real time remains a great challenge. Here, the authors demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell and tune its characteristics in a fast, repeatable, and controlled manner.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14438-2</identifier><identifier>PMID: 32001696</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/624/399 ; 639/638/161 ; 639/638/298 ; Devices ; Droplets ; Electrochemical cells ; Electrochemistry ; Humanities and Social Sciences ; Liquids ; Material properties ; MATERIALS SCIENCE ; Microlenses ; multidisciplinary ; Optoelectronic devices ; Organic chemistry ; Reaction mechanisms ; Real time ; Science ; Science (multidisciplinary) ; Substrates ; Sulfur</subject><ispartof>Nature communications, 2020-01, Vol.11 (1), p.606-606, Article 606</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3</citedby><cites>FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3</cites><orcidid>0000-0001-7061-2692 ; 0000-0001-9185-3161 ; 0000-0002-5966-0244 ; 0000-0002-6103-6352 ; 0000-0002-0274-4025 ; 0000-0001-8930-2125 ; 0000000259660244 ; 0000000261036352 ; 0000000191853161 ; 0000000189302125 ; 0000000202744025 ; 0000000170612692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2348777432/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2348777432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1619479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Yang, Ankun</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Gao, Guoping</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Yu, Xiaoyun</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Zong, Linqi</creatorcontrib><creatorcontrib>Liu, Bofei</creatorcontrib><creatorcontrib>Xu, Jinwei</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Li, Yanxi</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Brongersma, Mark L.</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Electrotunable liquid sulfur microdroplets</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices. Manipulating liquids with tunable shape and optical functionalities in real time remains a great challenge. Here, the authors demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell and tune its characteristics in a fast, repeatable, and controlled manner.</description><subject>132/122</subject><subject>639/624/399</subject><subject>639/638/161</subject><subject>639/638/298</subject><subject>Devices</subject><subject>Droplets</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Humanities and Social Sciences</subject><subject>Liquids</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Microlenses</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Organic chemistry</subject><subject>Reaction mechanisms</subject><subject>Real time</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Sulfur</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1qFTEUxwex2FL7Ai6k6KYgY5OTr8lGkFK1UCgU9yGTObnNJXdym8wIvo3P0iczt1Nr68JsEnJ-538-_k3zhpKPlLDutHDKpWoJkJZyzroWXjQHQDhtqQL28sl7vzkqZU3qYZp2nL9q9hkQQqWWB82H84huymmaR9tHPI7hdg7DcZmjn_Pdr01wOQ05bSNO5XWz520sePRwHzbXX86_n31rL6--Xpx9vmydkGpqJXRag2fW-11nWpBOe98rcF5i7xAsKEBNleBODIOEgTIpnKrZ6Nhhc7GIDsmuzTaHjc0_TbLB3H-kvDI2T8FFNI7yvtfo3KA4B8ns4KEHtD1YqpiQVevTorWd-w0ODscp2_hM9HlkDDdmlX4YWQdQQleBd4tAKlMwxYUJ3Y1L41h3ZqikmqsddPJQJafbGctkNqE4jNGOmOZigAlCtBRAK_r-H3Sd5jzWZVaKd0opzqBSsFB196Vk9I8dU2J25pvFfFPNN_fmm13S26ezPqb8sboCbAFKDY0rzH9r_0f2N4oSujs</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Zhou, Guangmin</creator><creator>Yang, Ankun</creator><creator>Wang, Yifei</creator><creator>Gao, Guoping</creator><creator>Pei, Allen</creator><creator>Yu, Xiaoyun</creator><creator>Zhu, Yangying</creator><creator>Zong, Linqi</creator><creator>Liu, Bofei</creator><creator>Xu, Jinwei</creator><creator>Liu, Nian</creator><creator>Zhang, Jinsong</creator><creator>Li, Yanxi</creator><creator>Wang, Lin-Wang</creator><creator>Hwang, Harold Y.</creator><creator>Brongersma, Mark L.</creator><creator>Chu, Steven</creator><creator>Cui, Yi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7061-2692</orcidid><orcidid>https://orcid.org/0000-0001-9185-3161</orcidid><orcidid>https://orcid.org/0000-0002-5966-0244</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0002-0274-4025</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000259660244</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000191853161</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000202744025</orcidid><orcidid>https://orcid.org/0000000170612692</orcidid></search><sort><creationdate>20200130</creationdate><title>Electrotunable liquid sulfur microdroplets</title><author>Zhou, Guangmin ; Yang, Ankun ; Wang, Yifei ; Gao, Guoping ; Pei, Allen ; Yu, Xiaoyun ; Zhu, Yangying ; Zong, Linqi ; Liu, Bofei ; Xu, Jinwei ; Liu, Nian ; Zhang, Jinsong ; Li, Yanxi ; Wang, Lin-Wang ; Hwang, Harold Y. ; Brongersma, Mark L. ; Chu, Steven ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>132/122</topic><topic>639/624/399</topic><topic>639/638/161</topic><topic>639/638/298</topic><topic>Devices</topic><topic>Droplets</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Humanities and Social Sciences</topic><topic>Liquids</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Microlenses</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Organic chemistry</topic><topic>Reaction mechanisms</topic><topic>Real time</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Yang, Ankun</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Gao, Guoping</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Yu, Xiaoyun</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Zong, Linqi</creatorcontrib><creatorcontrib>Liu, Bofei</creatorcontrib><creatorcontrib>Xu, Jinwei</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Li, Yanxi</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Brongersma, Mark L.</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Guangmin</au><au>Yang, Ankun</au><au>Wang, Yifei</au><au>Gao, Guoping</au><au>Pei, Allen</au><au>Yu, Xiaoyun</au><au>Zhu, Yangying</au><au>Zong, Linqi</au><au>Liu, Bofei</au><au>Xu, Jinwei</au><au>Liu, Nian</au><au>Zhang, Jinsong</au><au>Li, Yanxi</au><au>Wang, Lin-Wang</au><au>Hwang, Harold Y.</au><au>Brongersma, Mark L.</au><au>Chu, Steven</au><au>Cui, Yi</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrotunable liquid sulfur microdroplets</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-01-30</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>606</spage><epage>606</epage><pages>606-606</pages><artnum>606</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices. Manipulating liquids with tunable shape and optical functionalities in real time remains a great challenge. Here, the authors demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell and tune its characteristics in a fast, repeatable, and controlled manner.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32001696</pmid><doi>10.1038/s41467-020-14438-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7061-2692</orcidid><orcidid>https://orcid.org/0000-0001-9185-3161</orcidid><orcidid>https://orcid.org/0000-0002-5966-0244</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0002-0274-4025</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000259660244</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000191853161</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000202744025</orcidid><orcidid>https://orcid.org/0000000170612692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-01, Vol.11 (1), p.606-606, Article 606
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c14bb9eccd744263adf2b2eab2a17356
source Publicly Available Content Database; PubMed Central(OpenAccess); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 132/122
639/624/399
639/638/161
639/638/298
Devices
Droplets
Electrochemical cells
Electrochemistry
Humanities and Social Sciences
Liquids
Material properties
MATERIALS SCIENCE
Microlenses
multidisciplinary
Optoelectronic devices
Organic chemistry
Reaction mechanisms
Real time
Science
Science (multidisciplinary)
Substrates
Sulfur
title Electrotunable liquid sulfur microdroplets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrotunable%20liquid%20sulfur%C2%A0microdroplets&rft.jtitle=Nature%20communications&rft.au=Zhou,%20Guangmin&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-01-30&rft.volume=11&rft.issue=1&rft.spage=606&rft.epage=606&rft.pages=606-606&rft.artnum=606&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14438-2&rft_dat=%3Cproquest_doaj_%3E2350096521%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-628992f3aff144395089ffb72cf6ebce2a272e91754c5dd62d1365c7c56ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348777432&rft_id=info:pmid/32001696&rfr_iscdi=true