Loading…
Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution
High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivit...
Saved in:
Published in: | Advanced science 2023-11, Vol.10 (32), p.e2304067-e2304067 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | e2304067 |
container_issue | 32 |
container_start_page | e2304067 |
container_title | Advanced science |
container_volume | 10 |
creator | Lin-Rong, Wu Yu-Han, Zhang Wu, Zhen Tian, Jinlv Wang, Haorui Zhao, Haijun Xu, Shoudong Chen, Liang Duan, Xiaochuan Zhang, Ding Guo, Huijuan You, Ya Zhu, Zhi |
description | High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivity, and interfacial side reactions. Herein, a multi-site substituted strategy is employed to enhance the stability of O3-type NaNi0.5Mn0.5O2. Simulations indicate that the Ti substitution decreases the charge density of Ni ions and improves the antioxidative capability of the material. In addition, the synergistic effect of K+ and Ti4+ significantly reduces the formation energy of Na+ vacancy and delivers an ultra-low lattice strain during the repeated Na+ extraction/insertion. In situ characterizations verify that the complicated phase transformation is mitigated during the charge/discharge process, resulting in greatly improved structure stability. The co-substituted cathode delivers a high-rate capacity of 97 mAh g−1 at 5 C and excellent capacity retention of 81% after 400 cycles at 0.5 C. The full cell paired with commercial hard carbon anode also exhibits high capacity and long cycling life. This dual-ion substitution strategy will provide a universal approach for the new rational design of high-capacity cathode materials for NIBs. |
doi_str_mv | 10.1002/advs.202304067 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c14e815eff414693a78d114cd5ceeda5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c14e815eff414693a78d114cd5ceeda5</doaj_id><sourcerecordid>2889799159</sourcerecordid><originalsourceid>FETCH-LOGICAL-d252t-d4f3fc3d5a2f7cd0a28a4e9fe8cefc7bb834ce5b6dd745e371bd26b089c0b3b13</originalsourceid><addsrcrecordid>eNpdkU1rFEEQhpuAYFhzzbkhFyFM0p_T3UdZowYXVrLreeiP6qSX2em1p0cdL_51R5OTp6Le9-GBohC6pOSGEsJubfg-3jDCOBGkVWfonFGjG66FeI0uxvFACKGSK0H1Ofq9q9alPv2CgLe82c8nwBs7Q1n2XQ5pOuLtzxRgxD9SfcJ3w5Md_NI92Ar4C5SYy_Fvgu0Q8Hr2fRoe8YuzztjN-P1k-2aXFnyfxPXt52u8m9xYU51qysMb9CrafoSLl7lCXz_c7defms324_363aYJTLLaBBF59DxIy6LygVimrQATQXuIXjmnufAgXRuCEhK4oi6w1hFtPHHcUb5C98_ekO2hO5V0tGXusk3dvyCXx86WmnwPnacCNJUQo6CiNdwqHSgVPkgPEKxcXG-fXaeSv00w1u6YRg99bwfI09gx3ZqWCrV8YIWu_kMPeSrDculCaaOModLwP0Q0iDs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889799159</pqid></control><display><type>article</type><title>Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lin-Rong, Wu ; Yu-Han, Zhang ; Wu, Zhen ; Tian, Jinlv ; Wang, Haorui ; Zhao, Haijun ; Xu, Shoudong ; Chen, Liang ; Duan, Xiaochuan ; Zhang, Ding ; Guo, Huijuan ; You, Ya ; Zhu, Zhi</creator><creatorcontrib>Lin-Rong, Wu ; Yu-Han, Zhang ; Wu, Zhen ; Tian, Jinlv ; Wang, Haorui ; Zhao, Haijun ; Xu, Shoudong ; Chen, Liang ; Duan, Xiaochuan ; Zhang, Ding ; Guo, Huijuan ; You, Ya ; Zhu, Zhi</creatorcontrib><description>High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivity, and interfacial side reactions. Herein, a multi-site substituted strategy is employed to enhance the stability of O3-type NaNi0.5Mn0.5O2. Simulations indicate that the Ti substitution decreases the charge density of Ni ions and improves the antioxidative capability of the material. In addition, the synergistic effect of K+ and Ti4+ significantly reduces the formation energy of Na+ vacancy and delivers an ultra-low lattice strain during the repeated Na+ extraction/insertion. In situ characterizations verify that the complicated phase transformation is mitigated during the charge/discharge process, resulting in greatly improved structure stability. The co-substituted cathode delivers a high-rate capacity of 97 mAh g−1 at 5 C and excellent capacity retention of 81% after 400 cycles at 0.5 C. The full cell paired with commercial hard carbon anode also exhibits high capacity and long cycling life. This dual-ion substitution strategy will provide a universal approach for the new rational design of high-capacity cathode materials for NIBs.</description><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202304067</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Crystal structure ; Electrolytes ; Electrons ; Energy ; K/Ti co‐doping ; NaNi0.5Mn0.5O2 ; O3‐oxide cathode ; Particle size ; Phase transitions ; reversible phase transition ; sodium‐ion batteries</subject><ispartof>Advanced science, 2023-11, Vol.10 (32), p.e2304067-e2304067</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2889799159/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2889799159?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Lin-Rong, Wu</creatorcontrib><creatorcontrib>Yu-Han, Zhang</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Tian, Jinlv</creatorcontrib><creatorcontrib>Wang, Haorui</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Xu, Shoudong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Duan, Xiaochuan</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Guo, Huijuan</creatorcontrib><creatorcontrib>You, Ya</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><title>Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution</title><title>Advanced science</title><description>High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivity, and interfacial side reactions. Herein, a multi-site substituted strategy is employed to enhance the stability of O3-type NaNi0.5Mn0.5O2. Simulations indicate that the Ti substitution decreases the charge density of Ni ions and improves the antioxidative capability of the material. In addition, the synergistic effect of K+ and Ti4+ significantly reduces the formation energy of Na+ vacancy and delivers an ultra-low lattice strain during the repeated Na+ extraction/insertion. In situ characterizations verify that the complicated phase transformation is mitigated during the charge/discharge process, resulting in greatly improved structure stability. The co-substituted cathode delivers a high-rate capacity of 97 mAh g−1 at 5 C and excellent capacity retention of 81% after 400 cycles at 0.5 C. The full cell paired with commercial hard carbon anode also exhibits high capacity and long cycling life. This dual-ion substitution strategy will provide a universal approach for the new rational design of high-capacity cathode materials for NIBs.</description><subject>Crystal structure</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy</subject><subject>K/Ti co‐doping</subject><subject>NaNi0.5Mn0.5O2</subject><subject>O3‐oxide cathode</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>reversible phase transition</subject><subject>sodium‐ion batteries</subject><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rFEEQhpuAYFhzzbkhFyFM0p_T3UdZowYXVrLreeiP6qSX2em1p0cdL_51R5OTp6Le9-GBohC6pOSGEsJubfg-3jDCOBGkVWfonFGjG66FeI0uxvFACKGSK0H1Ofq9q9alPv2CgLe82c8nwBs7Q1n2XQ5pOuLtzxRgxD9SfcJ3w5Md_NI92Ar4C5SYy_Fvgu0Q8Hr2fRoe8YuzztjN-P1k-2aXFnyfxPXt52u8m9xYU51qysMb9CrafoSLl7lCXz_c7defms324_363aYJTLLaBBF59DxIy6LygVimrQATQXuIXjmnufAgXRuCEhK4oi6w1hFtPHHcUb5C98_ekO2hO5V0tGXusk3dvyCXx86WmnwPnacCNJUQo6CiNdwqHSgVPkgPEKxcXG-fXaeSv00w1u6YRg99bwfI09gx3ZqWCrV8YIWu_kMPeSrDculCaaOModLwP0Q0iDs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lin-Rong, Wu</creator><creator>Yu-Han, Zhang</creator><creator>Wu, Zhen</creator><creator>Tian, Jinlv</creator><creator>Wang, Haorui</creator><creator>Zhao, Haijun</creator><creator>Xu, Shoudong</creator><creator>Chen, Liang</creator><creator>Duan, Xiaochuan</creator><creator>Zhang, Ding</creator><creator>Guo, Huijuan</creator><creator>You, Ya</creator><creator>Zhu, Zhi</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231101</creationdate><title>Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution</title><author>Lin-Rong, Wu ; Yu-Han, Zhang ; Wu, Zhen ; Tian, Jinlv ; Wang, Haorui ; Zhao, Haijun ; Xu, Shoudong ; Chen, Liang ; Duan, Xiaochuan ; Zhang, Ding ; Guo, Huijuan ; You, Ya ; Zhu, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d252t-d4f3fc3d5a2f7cd0a28a4e9fe8cefc7bb834ce5b6dd745e371bd26b089c0b3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal structure</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy</topic><topic>K/Ti co‐doping</topic><topic>NaNi0.5Mn0.5O2</topic><topic>O3‐oxide cathode</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>reversible phase transition</topic><topic>sodium‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin-Rong, Wu</creatorcontrib><creatorcontrib>Yu-Han, Zhang</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Tian, Jinlv</creatorcontrib><creatorcontrib>Wang, Haorui</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Xu, Shoudong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Duan, Xiaochuan</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Guo, Huijuan</creatorcontrib><creatorcontrib>You, Ya</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin-Rong, Wu</au><au>Yu-Han, Zhang</au><au>Wu, Zhen</au><au>Tian, Jinlv</au><au>Wang, Haorui</au><au>Zhao, Haijun</au><au>Xu, Shoudong</au><au>Chen, Liang</au><au>Duan, Xiaochuan</au><au>Zhang, Ding</au><au>Guo, Huijuan</au><au>You, Ya</au><au>Zhu, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution</atitle><jtitle>Advanced science</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>10</volume><issue>32</issue><spage>e2304067</spage><epage>e2304067</epage><pages>e2304067-e2304067</pages><eissn>2198-3844</eissn><abstract>High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivity, and interfacial side reactions. Herein, a multi-site substituted strategy is employed to enhance the stability of O3-type NaNi0.5Mn0.5O2. Simulations indicate that the Ti substitution decreases the charge density of Ni ions and improves the antioxidative capability of the material. In addition, the synergistic effect of K+ and Ti4+ significantly reduces the formation energy of Na+ vacancy and delivers an ultra-low lattice strain during the repeated Na+ extraction/insertion. In situ characterizations verify that the complicated phase transformation is mitigated during the charge/discharge process, resulting in greatly improved structure stability. The co-substituted cathode delivers a high-rate capacity of 97 mAh g−1 at 5 C and excellent capacity retention of 81% after 400 cycles at 0.5 C. The full cell paired with commercial hard carbon anode also exhibits high capacity and long cycling life. This dual-ion substitution strategy will provide a universal approach for the new rational design of high-capacity cathode materials for NIBs.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/advs.202304067</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2198-3844 |
ispartof | Advanced science, 2023-11, Vol.10 (32), p.e2304067-e2304067 |
issn | 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c14e815eff414693a78d114cd5ceeda5 |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | Crystal structure Electrolytes Electrons Energy K/Ti co‐doping NaNi0.5Mn0.5O2 O3‐oxide cathode Particle size Phase transitions reversible phase transition sodium‐ion batteries |
title | Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilized%20O3-Type%20Layered%20Sodium%20Oxides%20with%20Enhanced%20Rate%20Performance%20and%20Cycling%20Stability%20by%20Dual-Site%20Ti4+/K+%20Substitution&rft.jtitle=Advanced%20science&rft.au=Lin-Rong,%20Wu&rft.date=2023-11-01&rft.volume=10&rft.issue=32&rft.spage=e2304067&rft.epage=e2304067&rft.pages=e2304067-e2304067&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202304067&rft_dat=%3Cproquest_doaj_%3E2889799159%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d252t-d4f3fc3d5a2f7cd0a28a4e9fe8cefc7bb834ce5b6dd745e371bd26b089c0b3b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889799159&rft_id=info:pmid/&rfr_iscdi=true |