Loading…

Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body

Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of N...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-04, Vol.19 (3), p.471-478
Main Authors: Annese, Valentina, Navarro-Guerrero, Elena, Rodríguez-Prieto, Ismael, Pardal, Ricardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3
cites cdi_FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3
container_end_page 478
container_issue 3
container_start_page 471
container_title Cell reports (Cambridge)
container_volume 19
creator Annese, Valentina
Navarro-Guerrero, Elena
Rodríguez-Prieto, Ismael
Pardal, Ricardo
description Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. [Display omitted] •Adult carotid body stem cells display multipotency during organ adaptation to hypoxia•Neural-crest-derived stem cells contribute to angiogenesis in the adult carotid body•Endothelial differentiation from carotid body stem cells is HIF2α and EPO dependent Annese et al. find that neural-crest-derived stem cells residing in the adult carotid body are multipotent. These cells have the capacity to contribute to both neurogenesis and angiogenesis during organ acclimatization to hypoxia. Endothelial fate specification is achieved by intrinsic (HIF2α) and extrinsic (EPO) mechanisms.
doi_str_mv 10.1016/j.celrep.2017.03.065
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c16b7ca506dd4a8fafd6eb7853c10aea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124717304266</els_id><doaj_id>oai_doaj_org_article_c16b7ca506dd4a8fafd6eb7853c10aea</doaj_id><sourcerecordid>1891089357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpP0DIRy5J_ZE4yQWpLFAqFagEnK2JPdn1yokX21lp_z0uW0p7wRdb8_GM532L4jWjFaNMXmwrjS7gruKUtRUVFZXNs-KUc8ZKxuv2-aP3SXEe45bmIyljff2yOOFdzYVg7LRQt5tDtN75tdXgyK2DmKy26UD8SL7iEsCVq4AxlR8w2D0a8j3hRFboXCR2JmmD5NIsLpEvME3gLMxkBcEna8h7bw6vihcjuIjn9_dZ8fPTxx-rz-XNt6vr1eVNqRvep1IDbZEPQrYj15K349BJENIMmqLBtsEup6QZQetBYysHKSTjDcWh4caMRpwV10eu8bBVu2AnCAflwao_AR_WCkLezKHSTA6thoZKY2roRhiNxKHtGqEZBYTMendk7ZZhQqNxTlmGJ9Cnmdlu1NrvVVPTvud9Bry9BwT_a8niqcnGbJiDGf0SFet6RrteNG0urY-lOvgYA44PYxhVd1arrTpare6sVlSobHVue_P4iw9Nf439twNm0fcWg4ra4qzR2IA6ZVXs_yf8BpoJvsE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891089357</pqid></control><display><type>article</type><title>Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Annese, Valentina ; Navarro-Guerrero, Elena ; Rodríguez-Prieto, Ismael ; Pardal, Ricardo</creator><creatorcontrib>Annese, Valentina ; Navarro-Guerrero, Elena ; Rodríguez-Prieto, Ismael ; Pardal, Ricardo</creatorcontrib><description>Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. [Display omitted] •Adult carotid body stem cells display multipotency during organ adaptation to hypoxia•Neural-crest-derived stem cells contribute to angiogenesis in the adult carotid body•Endothelial differentiation from carotid body stem cells is HIF2α and EPO dependent Annese et al. find that neural-crest-derived stem cells residing in the adult carotid body are multipotent. These cells have the capacity to contribute to both neurogenesis and angiogenesis during organ acclimatization to hypoxia. Endothelial fate specification is achieved by intrinsic (HIF2α) and extrinsic (EPO) mechanisms.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2017.03.065</identifier><identifier>PMID: 28423311</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult Stem Cells - cytology ; Adult Stem Cells - drug effects ; Adult Stem Cells - physiology ; angiogenesis and neurogenesis ; Animals ; Blood Vessels - cytology ; Carotid Body - cytology ; carotid body physiology ; Cell Differentiation - drug effects ; Cell Hypoxia - drug effects ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Erythropoietin - pharmacology ; Female ; hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Male ; Mammals - metabolism ; Mice, Transgenic ; Multipotent Stem Cells - cytology ; Multipotent Stem Cells - drug effects ; Multipotent Stem Cells - metabolism ; Neovascularization, Physiologic - drug effects ; Neural Stem Cells - cytology ; Neural Stem Cells - drug effects ; Neural Stem Cells - physiology ; neural-crest-derived adult stem cell plasticity and multipotency ; Neurogenesis - drug effects ; Neuronal Plasticity - drug effects</subject><ispartof>Cell reports (Cambridge), 2017-04, Vol.19 (3), p.471-478</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3</citedby><cites>FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28423311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Annese, Valentina</creatorcontrib><creatorcontrib>Navarro-Guerrero, Elena</creatorcontrib><creatorcontrib>Rodríguez-Prieto, Ismael</creatorcontrib><creatorcontrib>Pardal, Ricardo</creatorcontrib><title>Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. [Display omitted] •Adult carotid body stem cells display multipotency during organ adaptation to hypoxia•Neural-crest-derived stem cells contribute to angiogenesis in the adult carotid body•Endothelial differentiation from carotid body stem cells is HIF2α and EPO dependent Annese et al. find that neural-crest-derived stem cells residing in the adult carotid body are multipotent. These cells have the capacity to contribute to both neurogenesis and angiogenesis during organ acclimatization to hypoxia. Endothelial fate specification is achieved by intrinsic (HIF2α) and extrinsic (EPO) mechanisms.</description><subject>Adult Stem Cells - cytology</subject><subject>Adult Stem Cells - drug effects</subject><subject>Adult Stem Cells - physiology</subject><subject>angiogenesis and neurogenesis</subject><subject>Animals</subject><subject>Blood Vessels - cytology</subject><subject>Carotid Body - cytology</subject><subject>carotid body physiology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Hypoxia - drug effects</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Erythropoietin - pharmacology</subject><subject>Female</subject><subject>hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Male</subject><subject>Mammals - metabolism</subject><subject>Mice, Transgenic</subject><subject>Multipotent Stem Cells - cytology</subject><subject>Multipotent Stem Cells - drug effects</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neural Stem Cells - physiology</subject><subject>neural-crest-derived adult stem cell plasticity and multipotency</subject><subject>Neurogenesis - drug effects</subject><subject>Neuronal Plasticity - drug effects</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpP0DIRy5J_ZE4yQWpLFAqFagEnK2JPdn1yokX21lp_z0uW0p7wRdb8_GM532L4jWjFaNMXmwrjS7gruKUtRUVFZXNs-KUc8ZKxuv2-aP3SXEe45bmIyljff2yOOFdzYVg7LRQt5tDtN75tdXgyK2DmKy26UD8SL7iEsCVq4AxlR8w2D0a8j3hRFboXCR2JmmD5NIsLpEvME3gLMxkBcEna8h7bw6vihcjuIjn9_dZ8fPTxx-rz-XNt6vr1eVNqRvep1IDbZEPQrYj15K349BJENIMmqLBtsEup6QZQetBYysHKSTjDcWh4caMRpwV10eu8bBVu2AnCAflwao_AR_WCkLezKHSTA6thoZKY2roRhiNxKHtGqEZBYTMendk7ZZhQqNxTlmGJ9Cnmdlu1NrvVVPTvud9Bry9BwT_a8niqcnGbJiDGf0SFet6RrteNG0urY-lOvgYA44PYxhVd1arrTpare6sVlSobHVue_P4iw9Nf439twNm0fcWg4ra4qzR2IA6ZVXs_yf8BpoJvsE</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Annese, Valentina</creator><creator>Navarro-Guerrero, Elena</creator><creator>Rodríguez-Prieto, Ismael</creator><creator>Pardal, Ricardo</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170418</creationdate><title>Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body</title><author>Annese, Valentina ; Navarro-Guerrero, Elena ; Rodríguez-Prieto, Ismael ; Pardal, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult Stem Cells - cytology</topic><topic>Adult Stem Cells - drug effects</topic><topic>Adult Stem Cells - physiology</topic><topic>angiogenesis and neurogenesis</topic><topic>Animals</topic><topic>Blood Vessels - cytology</topic><topic>Carotid Body - cytology</topic><topic>carotid body physiology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Hypoxia - drug effects</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Erythropoietin - pharmacology</topic><topic>Female</topic><topic>hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Male</topic><topic>Mammals - metabolism</topic><topic>Mice, Transgenic</topic><topic>Multipotent Stem Cells - cytology</topic><topic>Multipotent Stem Cells - drug effects</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neural Stem Cells - physiology</topic><topic>neural-crest-derived adult stem cell plasticity and multipotency</topic><topic>Neurogenesis - drug effects</topic><topic>Neuronal Plasticity - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annese, Valentina</creatorcontrib><creatorcontrib>Navarro-Guerrero, Elena</creatorcontrib><creatorcontrib>Rodríguez-Prieto, Ismael</creatorcontrib><creatorcontrib>Pardal, Ricardo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annese, Valentina</au><au>Navarro-Guerrero, Elena</au><au>Rodríguez-Prieto, Ismael</au><au>Pardal, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><spage>471</spage><epage>478</epage><pages>471-478</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. [Display omitted] •Adult carotid body stem cells display multipotency during organ adaptation to hypoxia•Neural-crest-derived stem cells contribute to angiogenesis in the adult carotid body•Endothelial differentiation from carotid body stem cells is HIF2α and EPO dependent Annese et al. find that neural-crest-derived stem cells residing in the adult carotid body are multipotent. These cells have the capacity to contribute to both neurogenesis and angiogenesis during organ acclimatization to hypoxia. Endothelial fate specification is achieved by intrinsic (HIF2α) and extrinsic (EPO) mechanisms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28423311</pmid><doi>10.1016/j.celrep.2017.03.065</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2017-04, Vol.19 (3), p.471-478
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c16b7ca506dd4a8fafd6eb7853c10aea
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Adult Stem Cells - cytology
Adult Stem Cells - drug effects
Adult Stem Cells - physiology
angiogenesis and neurogenesis
Animals
Blood Vessels - cytology
Carotid Body - cytology
carotid body physiology
Cell Differentiation - drug effects
Cell Hypoxia - drug effects
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Erythropoietin - pharmacology
Female
hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Male
Mammals - metabolism
Mice, Transgenic
Multipotent Stem Cells - cytology
Multipotent Stem Cells - drug effects
Multipotent Stem Cells - metabolism
Neovascularization, Physiologic - drug effects
Neural Stem Cells - cytology
Neural Stem Cells - drug effects
Neural Stem Cells - physiology
neural-crest-derived adult stem cell plasticity and multipotency
Neurogenesis - drug effects
Neuronal Plasticity - drug effects
title Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20Plasticity%20of%20Neural-Crest-Derived%20Stem%20Cells%20in%20the%20Adult%20Mammalian%20Carotid%20Body&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Annese,%20Valentina&rft.date=2017-04-18&rft.volume=19&rft.issue=3&rft.spage=471&rft.epage=478&rft.pages=471-478&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2017.03.065&rft_dat=%3Cproquest_doaj_%3E1891089357%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-ca07e2b367f2c627fb86a36dbc0ede75e83676dfaccbce76b6361250eb52ddfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891089357&rft_id=info:pmid/28423311&rfr_iscdi=true