Loading…
Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations
Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connected...
Saved in:
Published in: | Fractal and fractional 2022-01, Vol.6 (1), p.39 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-f266de29838536290ea95f9fdc14f6aa5112b87b529cb179a15760590390bf93 |
container_end_page | |
container_issue | 1 |
container_start_page | 39 |
container_title | Fractal and fractional |
container_volume | 6 |
creator | Bandt, Christoph Mekhontsev, Dmitry |
description | Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields. |
doi_str_mv | 10.3390/fractalfract6010039 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1915f2f7a3444fa9286e3af03cbdf0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1915f2f7a3444fa9286e3af03cbdf0b</doaj_id><sourcerecordid>2621280502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f266de29838536290ea95f9fdc14f6aa5112b87b529cb179a15760590390bf93</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWGp_gZcFz62TZJPdHKW0dUEQpPcwm03Klu2mJmmh_961K-LB03sMj29mHiGPFBacK3h2AU3C7ioSKABXN2TCBORzTinc_vH3ZBbjHgBYobiAYkLWq84ebJ8wXLL1CMo21h9sCpdFxhbZEsPRpphV_dl357bfZVUImFrfD8kPn642PpA7h120sx-dku16tV2-zt_eN9Xy5W1uOC_T3DEpG8tUyUvBJVNgUQmnXGNo7iSioJTVZVELpkxNC4VUFBKEGl6C2ik-JdWIbTzu9TG0h-Fu7bHV14EPO40htaaz2lBFhWOuQJ7nuUPFSmk5OuCmbhzUA-tpZB2D_zzZmPTen8LwVdRMMspKEMCGFB9TJvgYg3W_Wyno7_r1P_XzL690egE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621280502</pqid></control><display><type>article</type><title>Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations</title><source>Publicly Available Content Database</source><creator>Bandt, Christoph ; Mekhontsev, Dmitry</creator><creatorcontrib>Bandt, Christoph ; Mekhontsev, Dmitry</creatorcontrib><description>Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract6010039</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Angles (geometry) ; aperiodic tile ; Carpets ; Crystallography ; fractal ; Fractal geometry ; Fractals ; Geometry ; Number theory ; Porous materials ; quadratic number field ; self-similar ; Self-similarity ; Symmetry</subject><ispartof>Fractal and fractional, 2022-01, Vol.6 (1), p.39</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-f266de29838536290ea95f9fdc14f6aa5112b87b529cb179a15760590390bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621280502/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621280502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Bandt, Christoph</creatorcontrib><creatorcontrib>Mekhontsev, Dmitry</creatorcontrib><title>Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations</title><title>Fractal and fractional</title><description>Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.</description><subject>Algebra</subject><subject>Angles (geometry)</subject><subject>aperiodic tile</subject><subject>Carpets</subject><subject>Crystallography</subject><subject>fractal</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Geometry</subject><subject>Number theory</subject><subject>Porous materials</subject><subject>quadratic number field</subject><subject>self-similar</subject><subject>Self-similarity</subject><subject>Symmetry</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkEFLAzEQhYMoWGp_gZcFz62TZJPdHKW0dUEQpPcwm03Klu2mJmmh_961K-LB03sMj29mHiGPFBacK3h2AU3C7ioSKABXN2TCBORzTinc_vH3ZBbjHgBYobiAYkLWq84ebJ8wXLL1CMo21h9sCpdFxhbZEsPRpphV_dl357bfZVUImFrfD8kPn642PpA7h120sx-dku16tV2-zt_eN9Xy5W1uOC_T3DEpG8tUyUvBJVNgUQmnXGNo7iSioJTVZVELpkxNC4VUFBKEGl6C2ik-JdWIbTzu9TG0h-Fu7bHV14EPO40htaaz2lBFhWOuQJ7nuUPFSmk5OuCmbhzUA-tpZB2D_zzZmPTen8LwVdRMMspKEMCGFB9TJvgYg3W_Wyno7_r1P_XzL690egE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bandt, Christoph</creator><creator>Mekhontsev, Dmitry</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20220101</creationdate><title>Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations</title><author>Bandt, Christoph ; Mekhontsev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f266de29838536290ea95f9fdc14f6aa5112b87b529cb179a15760590390bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Angles (geometry)</topic><topic>aperiodic tile</topic><topic>Carpets</topic><topic>Crystallography</topic><topic>fractal</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Geometry</topic><topic>Number theory</topic><topic>Porous materials</topic><topic>quadratic number field</topic><topic>self-similar</topic><topic>Self-similarity</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandt, Christoph</creatorcontrib><creatorcontrib>Mekhontsev, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandt, Christoph</au><au>Mekhontsev, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations</atitle><jtitle>Fractal and fractional</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>39</spage><pages>39-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract6010039</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2022-01, Vol.6 (1), p.39 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c1915f2f7a3444fa9286e3af03cbdf0b |
source | Publicly Available Content Database |
subjects | Algebra Angles (geometry) aperiodic tile Carpets Crystallography fractal Fractal geometry Fractals Geometry Number theory Porous materials quadratic number field self-similar Self-similarity Symmetry |
title | Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elementary%20Fractal%20Geometry.%202.%20Carpets%20Involving%20Irrational%20Rotations&rft.jtitle=Fractal%20and%20fractional&rft.au=Bandt,%20Christoph&rft.date=2022-01-01&rft.volume=6&rft.issue=1&rft.spage=39&rft.pages=39-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract6010039&rft_dat=%3Cproquest_doaj_%3E2621280502%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-f266de29838536290ea95f9fdc14f6aa5112b87b529cb179a15760590390bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621280502&rft_id=info:pmid/&rfr_iscdi=true |