Loading…

Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model

An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-05, Vol.7 (1), p.2195-12, Article 2195
Main Authors: Motherwell, Jessica M., Azimi, Mohammad S., Spicer, Kristine, Alves, Natascha G., Hodges, Nicholas A., Breslin, Jerome W., Katakam, Prasad V. G., Murfee, Walter L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063
cites cdi_FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063
container_end_page 12
container_issue 1
container_start_page 2195
container_title Scientific reports
container_volume 7
creator Motherwell, Jessica M.
Azimi, Mohammad S.
Spicer, Kristine
Alves, Natascha G.
Hodges, Nicholas A.
Breslin, Jerome W.
Katakam, Prasad V. G.
Murfee, Walter L.
description An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo .
doi_str_mv 10.1038/s41598-017-02272-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c19973452ba84f49adf4a81d9b9d14ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c19973452ba84f49adf4a81d9b9d14ae</doaj_id><sourcerecordid>1900832828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEolXpH-CALHHhEvDHOLEvSNVqC5W6cODjiDVx7G2WbFzsZIF_j3dTqi0SvtjyvPOMZ_wWxXNGXzMq1JsETGpVUlaXlPOal_CoOOUUZMkF54-PzifFeUobmpfkGph-WpxwJXmlpD4tvi132E84dmEgwZOLOLrYhR4j-bQNYbwhqynZ3pGF63tyOQ32oOwGggNZ_iJfu10gq87GsMNkp33eBzf-DPE7WYXW9c-KJx775M7v9rPiy-Xy8-J9ef3x3dXi4rq0EuhYgrWq1oyrWlaNqHSF3raUobYNNo5L8E74yqOQsm6FcJZW1kJb-xpAA63EWXE1c9uAG3Mbuy3G3yZgZw4XIa4NxrHLnRjLtK4FSN6gAg8aWw-oWKsb3TJAl1lvZ9bt1Gxda90wRuwfQB9Ghu7GrMPOSBAKGM-AV3eAGH5MLo1m2yWbB4iDC1MyTFOqBFdcZenLf6SbMMUhjyqrpASVG94D-azKc04pOn__GEbN3g1mdoPJbjAHNxjISS-O27hP-fv3WSBmQcqhYe3iUe3_Y_8AGK3ADQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955485572</pqid></control><display><type>article</type><title>Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Motherwell, Jessica M. ; Azimi, Mohammad S. ; Spicer, Kristine ; Alves, Natascha G. ; Hodges, Nicholas A. ; Breslin, Jerome W. ; Katakam, Prasad V. G. ; Murfee, Walter L.</creator><creatorcontrib>Motherwell, Jessica M. ; Azimi, Mohammad S. ; Spicer, Kristine ; Alves, Natascha G. ; Hodges, Nicholas A. ; Breslin, Jerome W. ; Katakam, Prasad V. G. ; Murfee, Walter L.</creatorcontrib><description>An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-02272-4</identifier><identifier>PMID: 28526859</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/107 ; 631/1647/767/1657 ; 631/61/2049 ; Angiogenesis ; Animal models ; Animals ; Arterioles ; Arterioles - cytology ; Biomimetics ; Cell culture ; Chlorides ; Endothelin 1 ; Endothelins ; Humanities and Social Sciences ; Male ; Mesentery ; Microvasculature ; Microvessels ; Models, Biological ; multidisciplinary ; Muscle, Smooth, Vascular - cytology ; Myocytes, Smooth Muscle - metabolism ; Neovascularization, Physiologic ; Physiology ; Potassium chloride ; Rats ; Rodents ; Science ; Science (multidisciplinary) ; Smooth muscle ; Time-Lapse Imaging ; Tissue engineering ; Vasoconstriction ; Vasoconstrictors</subject><ispartof>Scientific reports, 2017-05, Vol.7 (1), p.2195-12, Article 2195</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063</citedby><cites>FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1955485572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1955485572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28526859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Motherwell, Jessica M.</creatorcontrib><creatorcontrib>Azimi, Mohammad S.</creatorcontrib><creatorcontrib>Spicer, Kristine</creatorcontrib><creatorcontrib>Alves, Natascha G.</creatorcontrib><creatorcontrib>Hodges, Nicholas A.</creatorcontrib><creatorcontrib>Breslin, Jerome W.</creatorcontrib><creatorcontrib>Katakam, Prasad V. G.</creatorcontrib><creatorcontrib>Murfee, Walter L.</creatorcontrib><title>Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo .</description><subject>13/106</subject><subject>13/107</subject><subject>631/1647/767/1657</subject><subject>631/61/2049</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arterioles</subject><subject>Arterioles - cytology</subject><subject>Biomimetics</subject><subject>Cell culture</subject><subject>Chlorides</subject><subject>Endothelin 1</subject><subject>Endothelins</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mesentery</subject><subject>Microvasculature</subject><subject>Microvessels</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Neovascularization, Physiologic</subject><subject>Physiology</subject><subject>Potassium chloride</subject><subject>Rats</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Smooth muscle</subject><subject>Time-Lapse Imaging</subject><subject>Tissue engineering</subject><subject>Vasoconstriction</subject><subject>Vasoconstrictors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEolXpH-CALHHhEvDHOLEvSNVqC5W6cODjiDVx7G2WbFzsZIF_j3dTqi0SvtjyvPOMZ_wWxXNGXzMq1JsETGpVUlaXlPOal_CoOOUUZMkF54-PzifFeUobmpfkGph-WpxwJXmlpD4tvi132E84dmEgwZOLOLrYhR4j-bQNYbwhqynZ3pGF63tyOQ32oOwGggNZ_iJfu10gq87GsMNkp33eBzf-DPE7WYXW9c-KJx775M7v9rPiy-Xy8-J9ef3x3dXi4rq0EuhYgrWq1oyrWlaNqHSF3raUobYNNo5L8E74yqOQsm6FcJZW1kJb-xpAA63EWXE1c9uAG3Mbuy3G3yZgZw4XIa4NxrHLnRjLtK4FSN6gAg8aWw-oWKsb3TJAl1lvZ9bt1Gxda90wRuwfQB9Ghu7GrMPOSBAKGM-AV3eAGH5MLo1m2yWbB4iDC1MyTFOqBFdcZenLf6SbMMUhjyqrpASVG94D-azKc04pOn__GEbN3g1mdoPJbjAHNxjISS-O27hP-fv3WSBmQcqhYe3iUe3_Y_8AGK3ADQ</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Motherwell, Jessica M.</creator><creator>Azimi, Mohammad S.</creator><creator>Spicer, Kristine</creator><creator>Alves, Natascha G.</creator><creator>Hodges, Nicholas A.</creator><creator>Breslin, Jerome W.</creator><creator>Katakam, Prasad V. G.</creator><creator>Murfee, Walter L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170519</creationdate><title>Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model</title><author>Motherwell, Jessica M. ; Azimi, Mohammad S. ; Spicer, Kristine ; Alves, Natascha G. ; Hodges, Nicholas A. ; Breslin, Jerome W. ; Katakam, Prasad V. G. ; Murfee, Walter L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/106</topic><topic>13/107</topic><topic>631/1647/767/1657</topic><topic>631/61/2049</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arterioles</topic><topic>Arterioles - cytology</topic><topic>Biomimetics</topic><topic>Cell culture</topic><topic>Chlorides</topic><topic>Endothelin 1</topic><topic>Endothelins</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mesentery</topic><topic>Microvasculature</topic><topic>Microvessels</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Neovascularization, Physiologic</topic><topic>Physiology</topic><topic>Potassium chloride</topic><topic>Rats</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Smooth muscle</topic><topic>Time-Lapse Imaging</topic><topic>Tissue engineering</topic><topic>Vasoconstriction</topic><topic>Vasoconstrictors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motherwell, Jessica M.</creatorcontrib><creatorcontrib>Azimi, Mohammad S.</creatorcontrib><creatorcontrib>Spicer, Kristine</creatorcontrib><creatorcontrib>Alves, Natascha G.</creatorcontrib><creatorcontrib>Hodges, Nicholas A.</creatorcontrib><creatorcontrib>Breslin, Jerome W.</creatorcontrib><creatorcontrib>Katakam, Prasad V. G.</creatorcontrib><creatorcontrib>Murfee, Walter L.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motherwell, Jessica M.</au><au>Azimi, Mohammad S.</au><au>Spicer, Kristine</au><au>Alves, Natascha G.</au><au>Hodges, Nicholas A.</au><au>Breslin, Jerome W.</au><au>Katakam, Prasad V. G.</au><au>Murfee, Walter L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-05-19</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>2195</spage><epage>12</epage><pages>2195-12</pages><artnum>2195</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28526859</pmid><doi>10.1038/s41598-017-02272-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-05, Vol.7 (1), p.2195-12, Article 2195
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c19973452ba84f49adf4a81d9b9d14ae
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/106
13/107
631/1647/767/1657
631/61/2049
Angiogenesis
Animal models
Animals
Arterioles
Arterioles - cytology
Biomimetics
Cell culture
Chlorides
Endothelin 1
Endothelins
Humanities and Social Sciences
Male
Mesentery
Microvasculature
Microvessels
Models, Biological
multidisciplinary
Muscle, Smooth, Vascular - cytology
Myocytes, Smooth Muscle - metabolism
Neovascularization, Physiologic
Physiology
Potassium chloride
Rats
Rodents
Science
Science (multidisciplinary)
Smooth muscle
Time-Lapse Imaging
Tissue engineering
Vasoconstriction
Vasoconstrictors
title Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Arteriolar%20Smooth%20Muscle%20Cell%20Function%20in%20an%20Ex%20Vivo%20Microvascular%20Network%20Model&rft.jtitle=Scientific%20reports&rft.au=Motherwell,%20Jessica%20M.&rft.date=2017-05-19&rft.volume=7&rft.issue=1&rft.spage=2195&rft.epage=12&rft.pages=2195-12&rft.artnum=2195&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-02272-4&rft_dat=%3Cproquest_doaj_%3E1900832828%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4cc879128756b3696afcd01a9cbabe254fe3f6fa3557d33ec06cc4d7f74494063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955485572&rft_id=info:pmid/28526859&rfr_iscdi=true