Loading…

Experimental study on the heat transport capability of micro-grooved oscillating heat pipe

This paper presents an experimental study to investigate the heat transfer limit of a micro-grooved OHP at the vertical bottom heat mode. The internal hydraulic diameter of the micro-grooved OHP is about 2.0 mm, and deionized water was used as a working fluid at volumetric filling ratios (FRs) rangi...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2021-08, Vol.26, p.101210, Article 101210
Main Authors: Qu, Jian, Guan, Fengbo, Lv, Yaojie, Wang, Yalin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3
cites cdi_FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3
container_end_page
container_issue
container_start_page 101210
container_title Case studies in thermal engineering
container_volume 26
creator Qu, Jian
Guan, Fengbo
Lv, Yaojie
Wang, Yalin
description This paper presents an experimental study to investigate the heat transfer limit of a micro-grooved OHP at the vertical bottom heat mode. The internal hydraulic diameter of the micro-grooved OHP is about 2.0 mm, and deionized water was used as a working fluid at volumetric filling ratios (FRs) ranging from 30% to 60%. Experimental results demonstrated that the micro-grooved OHP could significantly enhance the allowable maximum input heat flux before the occurrence of dry-out owing to the capillary action provided by micro-grooved structures to facilitate condensate backflow to the evaporator. The OHP obtained a maximum effective thermal conductivity of 41.8 kW/(m·°C) at 40% FR, corresponding to a dry-out heat flux of 36.9 W/cm2 with respect to the heat transfer limit. The allowable maximum input heat flux was found to be greater than 80 W/cm2 for 50% and 60% FRs, and could be further increased by increasing the OHP turn number. This study provides a promising option to address thermal management demand for high-density power devices.
doi_str_mv 10.1016/j.csite.2021.101210
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1b0fe269cf54fc6a55b4753929b1969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X21003737</els_id><doaj_id>oai_doaj_org_article_c1b0fe269cf54fc6a55b4753929b1969</doaj_id><sourcerecordid>S2214157X21003737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGqfwM28wNQkk8zPwoWUqoWCGwVxE_Jz06ZMJ0MSi317px0RV67u5XDP4Z4PoVuC5wST8m4319ElmFNMyUmhBF-gCaWE5YRX75d_9ms0i3GHMSZVURPGJuhj-dVDcHvokmyzmD7NMfNdlraQbUGmLAXZxd6HlGnZS-Val4YDm-2dDj7fBO8PYDIftWtbmVy3GW296-EGXVnZRpj9zCl6e1y-Lp7z9cvTavGwzjUjLOVGclvQEmvFWCFropS2ytSScGtUXdSlNtwAqWtaKsCM1doYrpqKMVVYzWUxRasx13i5E_1QRoaj8NKJs-DDRsiQnG5BaKKwBVo22nJmdSk5V6ziRUMbRZqyGbKKMWtoF2MA-5tHsDjRFjtxpi1OtMVIe3Ddjy4Yah4cBDHwgE6DcQF0Gv5w__q_AVH5izE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental study on the heat transport capability of micro-grooved oscillating heat pipe</title><source>ScienceDirect Journals</source><creator>Qu, Jian ; Guan, Fengbo ; Lv, Yaojie ; Wang, Yalin</creator><creatorcontrib>Qu, Jian ; Guan, Fengbo ; Lv, Yaojie ; Wang, Yalin</creatorcontrib><description>This paper presents an experimental study to investigate the heat transfer limit of a micro-grooved OHP at the vertical bottom heat mode. The internal hydraulic diameter of the micro-grooved OHP is about 2.0 mm, and deionized water was used as a working fluid at volumetric filling ratios (FRs) ranging from 30% to 60%. Experimental results demonstrated that the micro-grooved OHP could significantly enhance the allowable maximum input heat flux before the occurrence of dry-out owing to the capillary action provided by micro-grooved structures to facilitate condensate backflow to the evaporator. The OHP obtained a maximum effective thermal conductivity of 41.8 kW/(m·°C) at 40% FR, corresponding to a dry-out heat flux of 36.9 W/cm2 with respect to the heat transfer limit. The allowable maximum input heat flux was found to be greater than 80 W/cm2 for 50% and 60% FRs, and could be further increased by increasing the OHP turn number. This study provides a promising option to address thermal management demand for high-density power devices.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2021.101210</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Effective thermal conductivity ; Heat transfer limit ; Microgroove ; Oscillating heat pipe</subject><ispartof>Case studies in thermal engineering, 2021-08, Vol.26, p.101210, Article 101210</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3</citedby><cites>FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X21003737$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Qu, Jian</creatorcontrib><creatorcontrib>Guan, Fengbo</creatorcontrib><creatorcontrib>Lv, Yaojie</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><title>Experimental study on the heat transport capability of micro-grooved oscillating heat pipe</title><title>Case studies in thermal engineering</title><description>This paper presents an experimental study to investigate the heat transfer limit of a micro-grooved OHP at the vertical bottom heat mode. The internal hydraulic diameter of the micro-grooved OHP is about 2.0 mm, and deionized water was used as a working fluid at volumetric filling ratios (FRs) ranging from 30% to 60%. Experimental results demonstrated that the micro-grooved OHP could significantly enhance the allowable maximum input heat flux before the occurrence of dry-out owing to the capillary action provided by micro-grooved structures to facilitate condensate backflow to the evaporator. The OHP obtained a maximum effective thermal conductivity of 41.8 kW/(m·°C) at 40% FR, corresponding to a dry-out heat flux of 36.9 W/cm2 with respect to the heat transfer limit. The allowable maximum input heat flux was found to be greater than 80 W/cm2 for 50% and 60% FRs, and could be further increased by increasing the OHP turn number. This study provides a promising option to address thermal management demand for high-density power devices.</description><subject>Effective thermal conductivity</subject><subject>Heat transfer limit</subject><subject>Microgroove</subject><subject>Oscillating heat pipe</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1KAzEUhYMoWGqfwM28wNQkk8zPwoWUqoWCGwVxE_Jz06ZMJ0MSi317px0RV67u5XDP4Z4PoVuC5wST8m4319ElmFNMyUmhBF-gCaWE5YRX75d_9ms0i3GHMSZVURPGJuhj-dVDcHvokmyzmD7NMfNdlraQbUGmLAXZxd6HlGnZS-Val4YDm-2dDj7fBO8PYDIftWtbmVy3GW296-EGXVnZRpj9zCl6e1y-Lp7z9cvTavGwzjUjLOVGclvQEmvFWCFropS2ytSScGtUXdSlNtwAqWtaKsCM1doYrpqKMVVYzWUxRasx13i5E_1QRoaj8NKJs-DDRsiQnG5BaKKwBVo22nJmdSk5V6ziRUMbRZqyGbKKMWtoF2MA-5tHsDjRFjtxpi1OtMVIe3Ddjy4Yah4cBDHwgE6DcQF0Gv5w__q_AVH5izE</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Qu, Jian</creator><creator>Guan, Fengbo</creator><creator>Lv, Yaojie</creator><creator>Wang, Yalin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202108</creationdate><title>Experimental study on the heat transport capability of micro-grooved oscillating heat pipe</title><author>Qu, Jian ; Guan, Fengbo ; Lv, Yaojie ; Wang, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Effective thermal conductivity</topic><topic>Heat transfer limit</topic><topic>Microgroove</topic><topic>Oscillating heat pipe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Jian</creatorcontrib><creatorcontrib>Guan, Fengbo</creatorcontrib><creatorcontrib>Lv, Yaojie</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Jian</au><au>Guan, Fengbo</au><au>Lv, Yaojie</au><au>Wang, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on the heat transport capability of micro-grooved oscillating heat pipe</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2021-08</date><risdate>2021</risdate><volume>26</volume><spage>101210</spage><pages>101210-</pages><artnum>101210</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>This paper presents an experimental study to investigate the heat transfer limit of a micro-grooved OHP at the vertical bottom heat mode. The internal hydraulic diameter of the micro-grooved OHP is about 2.0 mm, and deionized water was used as a working fluid at volumetric filling ratios (FRs) ranging from 30% to 60%. Experimental results demonstrated that the micro-grooved OHP could significantly enhance the allowable maximum input heat flux before the occurrence of dry-out owing to the capillary action provided by micro-grooved structures to facilitate condensate backflow to the evaporator. The OHP obtained a maximum effective thermal conductivity of 41.8 kW/(m·°C) at 40% FR, corresponding to a dry-out heat flux of 36.9 W/cm2 with respect to the heat transfer limit. The allowable maximum input heat flux was found to be greater than 80 W/cm2 for 50% and 60% FRs, and could be further increased by increasing the OHP turn number. This study provides a promising option to address thermal management demand for high-density power devices.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2021.101210</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2021-08, Vol.26, p.101210, Article 101210
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c1b0fe269cf54fc6a55b4753929b1969
source ScienceDirect Journals
subjects Effective thermal conductivity
Heat transfer limit
Microgroove
Oscillating heat pipe
title Experimental study on the heat transport capability of micro-grooved oscillating heat pipe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20the%20heat%20transport%20capability%20of%20micro-grooved%20oscillating%20heat%20pipe&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Qu,%20Jian&rft.date=2021-08&rft.volume=26&rft.spage=101210&rft.pages=101210-&rft.artnum=101210&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2021.101210&rft_dat=%3Celsevier_doaj_%3ES2214157X21003737%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-da5f3260cb443a81bbcfbd8a15fdb8386cd5de18826be0448cdd5b9744b3fc5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true