Loading…
Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge
The depletion of fossil fuels has become a significant global issue, prompting scientists to explore and refine methods for harnessing alternative energy sources. This study provides a comprehensive review of advancements and emerging technologies in the desalination industry, focusing on technologi...
Saved in:
Published in: | Separations 2024-10, Vol.11 (10), p.291 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The depletion of fossil fuels has become a significant global issue, prompting scientists to explore and refine methods for harnessing alternative energy sources. This study provides a comprehensive review of advancements and emerging technologies in the desalination industry, focusing on technological improvements and economic considerations. The analysis highlights the potential synergies of integrating multiple renewable energy systems to enhance desalination efficiency and minimise environmental consequences. The main areas of focus include aligning developing technologies like membrane distillation, pervaporation and forward osmosis with renewable energy and implementing hybrid renewable energy systems to improve the scalability and economic viability of desalination enterprises. The study also analyses obstacles related to desalination driven by renewable energy, including energy storage, fluctuations in energy supply, and deployment costs. By resolving these obstacles and investigating novel methodologies, the study enhances the understanding of how renewable energy can be used to construct more efficient, sustainable, and economical desalination systems. Thermal desalination technologies require more energy than membrane-based systems due to the significant energy requirements associated with water vaporisation. The photovoltaic-powered reverse osmosis (RO) system had the most economically favourable production cost, while MED powered via a concentrated solar power (CSP) system had the highest production cost. The study aims to guide future research and development efforts, ultimately promoting the worldwide use of renewable energy-powered desalination systems. |
---|---|
ISSN: | 2297-8739 2297-8739 |
DOI: | 10.3390/separations11100291 |