Loading…

Two-Dimensional Composite Acoustic Metamaterials of Rectangular Unit Cell from Pentamode to Band Gap

Pentamode metamaterials have been receiving an increasing amount of interest due to their water-like properties. In this paper, a two-dimensional composite pentamode metamaterial of rectangular unit cell is proposed. The unit cells can be classified into two groups, one with uniform arms and the oth...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2021-12, Vol.11 (12), p.1457
Main Authors: Li, Qi, Wu, Ke, Zhang, Mingquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pentamode metamaterials have been receiving an increasing amount of interest due to their water-like properties. In this paper, a two-dimensional composite pentamode metamaterial of rectangular unit cell is proposed. The unit cells can be classified into two groups, one with uniform arms and the other with non-uniform arms. Phononic band structures of the unit cells were calculated to derive their properties. The unit cells can be pentamode metamaterials that permit acoustic wave travelling or have a total band gap that impedes acoustic wave propagation by varying the structures. The influences of geometric parameters and materials of the composed elements on the effective velocities and anisotropy were analyzed. The metamaterials can be used for acoustic wave control under water. Simulations of materials with different unit cells were conducted to verify the calculated properties of the unit cells. The research provides theoretical support for applications of the pentamode metamaterials.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst11121457