Loading…

Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net

Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2024-05, Vol.18, p.1410936
Main Authors: You, Sungmin, De Leon Barba, Anette, Cruz Tamayo, Valeria, Yun, Hyuk Jin, Yang, Edward, Grant, P Ellen, Im, Kiho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273
container_end_page
container_issue
container_start_page 1410936
container_title Frontiers in neuroscience
container_volume 18
creator You, Sungmin
De Leon Barba, Anette
Cruz Tamayo, Valeria
Yun, Hyuk Jin
Yang, Edward
Grant, P Ellen
Im, Kiho
description Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.
doi_str_mv 10.3389/fnins.2024.1410936
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1</doaj_id><sourcerecordid>3068755944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi1ERT_gD3BAOXLJ4vFXnBOqqkIrVeLSStyM44_dVFl7sR0k_n2d3WVFT2PPvPOMxy9CHwGvKJX9Fx_GkFcEE7YCBrin4g26ACFIyzj9-fZ0ZvIcXeb8jLEgkpF36JxK2ZGe8Qv063oucavLaBoTUw16avKcvDau2elk3DTVYgzNGJqycY13pSqGpOt9zmNYN7oUFxZJu9bF2SbvNi7tOU9tcOU9OvN6yu7DMV6hx2-3jzd37cOP7_c31w-toRyXlvsOD4Ct7wYiQEovQIPVmEg-SNlbaRjtGXaOYwqYGcO8ZOClBcsF6egVuj9gbdTPapfGrU5_VdSj2idiWiu9rDc5ZcAQCsJqCaYimHayjmKit7iz2kFlfT2wdvOwddbU9ZKeXkFfV8K4Uev4RwGA6CVfCJ-PhBR_zy4XtR3z_i-Di3NWFAvZcd4zVqXkIDUp5pycP80BrBab1d5mtdisjjbXpk__v_DU8s9X-gLaxKZf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755944</pqid></control><display><type>article</type><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</creator><creatorcontrib>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</creatorcontrib><description>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2024.1410936</identifier><identifier>PMID: 38872945</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>attention mechanism ; brain MRI ; cortical surface parcellation ; deep learning ; fetal MRI ; Neuroscience ; spherical U-net</subject><ispartof>Frontiers in neuroscience, 2024-05, Vol.18, p.1410936</ispartof><rights>Copyright © 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im.</rights><rights>Copyright © 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im. 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169851/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169851/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38872945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>You, Sungmin</creatorcontrib><creatorcontrib>De Leon Barba, Anette</creatorcontrib><creatorcontrib>Cruz Tamayo, Valeria</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Yang, Edward</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</description><subject>attention mechanism</subject><subject>brain MRI</subject><subject>cortical surface parcellation</subject><subject>deep learning</subject><subject>fetal MRI</subject><subject>Neuroscience</subject><subject>spherical U-net</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhi1ERT_gD3BAOXLJ4vFXnBOqqkIrVeLSStyM44_dVFl7sR0k_n2d3WVFT2PPvPOMxy9CHwGvKJX9Fx_GkFcEE7YCBrin4g26ACFIyzj9-fZ0ZvIcXeb8jLEgkpF36JxK2ZGe8Qv063oucavLaBoTUw16avKcvDau2elk3DTVYgzNGJqycY13pSqGpOt9zmNYN7oUFxZJu9bF2SbvNi7tOU9tcOU9OvN6yu7DMV6hx2-3jzd37cOP7_c31w-toRyXlvsOD4Ct7wYiQEovQIPVmEg-SNlbaRjtGXaOYwqYGcO8ZOClBcsF6egVuj9gbdTPapfGrU5_VdSj2idiWiu9rDc5ZcAQCsJqCaYimHayjmKit7iz2kFlfT2wdvOwddbU9ZKeXkFfV8K4Uev4RwGA6CVfCJ-PhBR_zy4XtR3z_i-Di3NWFAvZcd4zVqXkIDUp5pycP80BrBab1d5mtdisjjbXpk__v_DU8s9X-gLaxKZf</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>You, Sungmin</creator><creator>De Leon Barba, Anette</creator><creator>Cruz Tamayo, Valeria</creator><creator>Yun, Hyuk Jin</creator><creator>Yang, Edward</creator><creator>Grant, P Ellen</creator><creator>Im, Kiho</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240530</creationdate><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><author>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attention mechanism</topic><topic>brain MRI</topic><topic>cortical surface parcellation</topic><topic>deep learning</topic><topic>fetal MRI</topic><topic>Neuroscience</topic><topic>spherical U-net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Sungmin</creatorcontrib><creatorcontrib>De Leon Barba, Anette</creatorcontrib><creatorcontrib>Cruz Tamayo, Valeria</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Yang, Edward</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Sungmin</au><au>De Leon Barba, Anette</au><au>Cruz Tamayo, Valeria</au><au>Yun, Hyuk Jin</au><au>Yang, Edward</au><au>Grant, P Ellen</au><au>Im, Kiho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>18</volume><spage>1410936</spage><pages>1410936-</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38872945</pmid><doi>10.3389/fnins.2024.1410936</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2024-05, Vol.18, p.1410936
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1
source Publicly Available Content Database; PubMed Central
subjects attention mechanism
brain MRI
cortical surface parcellation
deep learning
fetal MRI
Neuroscience
spherical U-net
title Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20cortical%20surface%20parcellation%20in%20the%20fetal%20brain%20using%20attention-gated%20spherical%20U-net&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=You,%20Sungmin&rft.date=2024-05-30&rft.volume=18&rft.spage=1410936&rft.pages=1410936-&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2024.1410936&rft_dat=%3Cproquest_doaj_%3E3068755944%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068755944&rft_id=info:pmid/38872945&rfr_iscdi=true