Loading…
Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net
Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic...
Saved in:
Published in: | Frontiers in neuroscience 2024-05, Vol.18, p.1410936 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273 |
container_end_page | |
container_issue | |
container_start_page | 1410936 |
container_title | Frontiers in neuroscience |
container_volume | 18 |
creator | You, Sungmin De Leon Barba, Anette Cruz Tamayo, Valeria Yun, Hyuk Jin Yang, Edward Grant, P Ellen Im, Kiho |
description | Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses. |
doi_str_mv | 10.3389/fnins.2024.1410936 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1</doaj_id><sourcerecordid>3068755944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi1ERT_gD3BAOXLJ4vFXnBOqqkIrVeLSStyM44_dVFl7sR0k_n2d3WVFT2PPvPOMxy9CHwGvKJX9Fx_GkFcEE7YCBrin4g26ACFIyzj9-fZ0ZvIcXeb8jLEgkpF36JxK2ZGe8Qv063oucavLaBoTUw16avKcvDau2elk3DTVYgzNGJqycY13pSqGpOt9zmNYN7oUFxZJu9bF2SbvNi7tOU9tcOU9OvN6yu7DMV6hx2-3jzd37cOP7_c31w-toRyXlvsOD4Ct7wYiQEovQIPVmEg-SNlbaRjtGXaOYwqYGcO8ZOClBcsF6egVuj9gbdTPapfGrU5_VdSj2idiWiu9rDc5ZcAQCsJqCaYimHayjmKit7iz2kFlfT2wdvOwddbU9ZKeXkFfV8K4Uev4RwGA6CVfCJ-PhBR_zy4XtR3z_i-Di3NWFAvZcd4zVqXkIDUp5pycP80BrBab1d5mtdisjjbXpk__v_DU8s9X-gLaxKZf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755944</pqid></control><display><type>article</type><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</creator><creatorcontrib>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</creatorcontrib><description>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2024.1410936</identifier><identifier>PMID: 38872945</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>attention mechanism ; brain MRI ; cortical surface parcellation ; deep learning ; fetal MRI ; Neuroscience ; spherical U-net</subject><ispartof>Frontiers in neuroscience, 2024-05, Vol.18, p.1410936</ispartof><rights>Copyright © 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im.</rights><rights>Copyright © 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im. 2024 You, De Leon Barba, Cruz Tamayo, Yun, Yang, Grant and Im</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169851/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169851/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38872945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>You, Sungmin</creatorcontrib><creatorcontrib>De Leon Barba, Anette</creatorcontrib><creatorcontrib>Cruz Tamayo, Valeria</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Yang, Edward</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</description><subject>attention mechanism</subject><subject>brain MRI</subject><subject>cortical surface parcellation</subject><subject>deep learning</subject><subject>fetal MRI</subject><subject>Neuroscience</subject><subject>spherical U-net</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhi1ERT_gD3BAOXLJ4vFXnBOqqkIrVeLSStyM44_dVFl7sR0k_n2d3WVFT2PPvPOMxy9CHwGvKJX9Fx_GkFcEE7YCBrin4g26ACFIyzj9-fZ0ZvIcXeb8jLEgkpF36JxK2ZGe8Qv063oucavLaBoTUw16avKcvDau2elk3DTVYgzNGJqycY13pSqGpOt9zmNYN7oUFxZJu9bF2SbvNi7tOU9tcOU9OvN6yu7DMV6hx2-3jzd37cOP7_c31w-toRyXlvsOD4Ct7wYiQEovQIPVmEg-SNlbaRjtGXaOYwqYGcO8ZOClBcsF6egVuj9gbdTPapfGrU5_VdSj2idiWiu9rDc5ZcAQCsJqCaYimHayjmKit7iz2kFlfT2wdvOwddbU9ZKeXkFfV8K4Uev4RwGA6CVfCJ-PhBR_zy4XtR3z_i-Di3NWFAvZcd4zVqXkIDUp5pycP80BrBab1d5mtdisjjbXpk__v_DU8s9X-gLaxKZf</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>You, Sungmin</creator><creator>De Leon Barba, Anette</creator><creator>Cruz Tamayo, Valeria</creator><creator>Yun, Hyuk Jin</creator><creator>Yang, Edward</creator><creator>Grant, P Ellen</creator><creator>Im, Kiho</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240530</creationdate><title>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</title><author>You, Sungmin ; De Leon Barba, Anette ; Cruz Tamayo, Valeria ; Yun, Hyuk Jin ; Yang, Edward ; Grant, P Ellen ; Im, Kiho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attention mechanism</topic><topic>brain MRI</topic><topic>cortical surface parcellation</topic><topic>deep learning</topic><topic>fetal MRI</topic><topic>Neuroscience</topic><topic>spherical U-net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Sungmin</creatorcontrib><creatorcontrib>De Leon Barba, Anette</creatorcontrib><creatorcontrib>Cruz Tamayo, Valeria</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Yang, Edward</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Sungmin</au><au>De Leon Barba, Anette</au><au>Cruz Tamayo, Valeria</au><au>Yun, Hyuk Jin</au><au>Yang, Edward</au><au>Grant, P Ellen</au><au>Im, Kiho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>18</volume><spage>1410936</spage><pages>1410936-</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38872945</pmid><doi>10.3389/fnins.2024.1410936</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2024-05, Vol.18, p.1410936 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c1c2316da81c41f4ae8a1d469d07dae1 |
source | Publicly Available Content Database; PubMed Central |
subjects | attention mechanism brain MRI cortical surface parcellation deep learning fetal MRI Neuroscience spherical U-net |
title | Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20cortical%20surface%20parcellation%20in%20the%20fetal%20brain%20using%20attention-gated%20spherical%20U-net&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=You,%20Sungmin&rft.date=2024-05-30&rft.volume=18&rft.spage=1410936&rft.pages=1410936-&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2024.1410936&rft_dat=%3Cproquest_doaj_%3E3068755944%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5f70b10df7b26188f61a1da0285b889d8c43940ee503104cc4f841f8d1d56273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068755944&rft_id=info:pmid/38872945&rfr_iscdi=true |