Loading…

Advanced G-MPS-PMMA Bone Cements: Influence of Graphene Silanisation on Fatigue Performance, Thermal Properties and Biocompatibility

The incorporation of well-dispersed graphene (G) powder to polymethyl methacrylate (PMMA) bone cement has been demonstrated as a promising solution to improving its mechanical performance. However, two crucial aspects limit the effectiveness of G as a reinforcing agent: (1) the poor dispersion and (...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-01, Vol.11 (1), p.139
Main Authors: Paz, Eva, Ballesteros, Yolanda, Abenojar, Juana, Dunne, Nicholas, Del Real, Juan C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incorporation of well-dispersed graphene (G) powder to polymethyl methacrylate (PMMA) bone cement has been demonstrated as a promising solution to improving its mechanical performance. However, two crucial aspects limit the effectiveness of G as a reinforcing agent: (1) the poor dispersion and (2) the lack of strong interfacial bonds between G and the matrix of the bone cement. This work reports a successful functionalisation route to promote the homogenous dispersion of G via silanisation using 3-methacryloxypropyltrimethoxy silane (MPS). Furthermore, the effects of the silanisation on the mechanical, thermal and biocompatibility properties of bone cements are presented. In comparison with unsilanised G, the incorporation of silanised G (G_MPS1 and G_MPS2) increased the bending strength by 17%, bending modulus by 15% and deflection at failure by 17%. The most impressive results were obtained for the mechanical properties under fatigue loading, where the incorporation of G_MPS doubled the Fatigue Performance Index (I) value of unsilanised G-bone cement-meaning a 900% increase over the I value of the cement without G. Additionally, to ensure that the silanisation did not have a negative influence on other fundamental properties of bone cement, it was demonstrated that the thermal properties and biocompatibility were not negatively impacted-allowing its potential clinical progression.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11010139