Loading…

Immunometabolism of Phagocytes and Relationships to Cardiac Repair

Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cardiovascular medicine 2019-04, Vol.6, p.42-42
Main Authors: Zhang, Shuang, Bories, Gael, Lantz, Connor, Emmons, Russel, Becker, Amanda, Liu, Esther, Abecassis, Michael M, Yvan-Charvet, Laurent, Thorp, Edward B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603
cites cdi_FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603
container_end_page 42
container_issue
container_start_page 42
container_title Frontiers in cardiovascular medicine
container_volume 6
creator Zhang, Shuang
Bories, Gael
Lantz, Connor
Emmons, Russel
Becker, Amanda
Liu, Esther
Abecassis, Michael M
Yvan-Charvet, Laurent
Thorp, Edward B
description Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.
doi_str_mv 10.3389/fcvm.2019.00042
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1ed2dfeea274b2f8e46ae49da5beda3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1ed2dfeea274b2f8e46ae49da5beda3</doaj_id><sourcerecordid>2216770642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhkVpSEKSc27Fx152o2_bl0K79GMh0FJa6E2MNaNdBdvaSt5A_n292TQkJwnNq2dmeBi7FnypVNPeBH8_LCUX7ZJzruUbdi5lWy-4MX_evrifsatS7uaIMLoxtjllZ0pwJaUV5-zTehj2Yxpogi71sQxVCtWPLWySf5ioVDBi9ZN6mGIayzbuSjWlagUZI_i5sIOYL9lJgL7Q1dN5wX5_-fxr9W1x-_3revXxduGNNNPCSuBtQOSgTEONEaBFQC9qGxoOHap5Bd15ZbCDTkuDGNC0qIh8I4Tl6oKtj1xMcOd2OQ6QH1yC6B4fUt44yFP0PTkvCCUGIpC17mRoSFsg3SKYjhDUzPpwZO323UDoaZwy9K-grytj3LpNundW11zWYga8fwLk9HdPZXJDLJ76HkZK--KkFLauudVyjt4coz6nUjKF5zaCu4NIdxDpDiLdo8j5x7uX0z3n_2tT_wAIjpw2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216770642</pqid></control><display><type>article</type><title>Immunometabolism of Phagocytes and Relationships to Cardiac Repair</title><source>PubMed Central</source><creator>Zhang, Shuang ; Bories, Gael ; Lantz, Connor ; Emmons, Russel ; Becker, Amanda ; Liu, Esther ; Abecassis, Michael M ; Yvan-Charvet, Laurent ; Thorp, Edward B</creator><creatorcontrib>Zhang, Shuang ; Bories, Gael ; Lantz, Connor ; Emmons, Russel ; Becker, Amanda ; Liu, Esther ; Abecassis, Michael M ; Yvan-Charvet, Laurent ; Thorp, Edward B</creatorcontrib><description>Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.</description><identifier>ISSN: 2297-055X</identifier><identifier>EISSN: 2297-055X</identifier><identifier>DOI: 10.3389/fcvm.2019.00042</identifier><identifier>PMID: 31032261</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Cardiovascular Medicine ; hypoxia ; immunometabolism ; macrophage ; neutrophil ; phagocyte ; reperfusion</subject><ispartof>Frontiers in cardiovascular medicine, 2019-04, Vol.6, p.42-42</ispartof><rights>Copyright © 2019 Zhang, Bories, Lantz, Emmons, Becker, Liu, Abecassis, Yvan-Charvet and Thorp. 2019 Zhang, Bories, Lantz, Emmons, Becker, Liu, Abecassis, Yvan-Charvet and Thorp</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603</citedby><cites>FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470271/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470271/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31032261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Bories, Gael</creatorcontrib><creatorcontrib>Lantz, Connor</creatorcontrib><creatorcontrib>Emmons, Russel</creatorcontrib><creatorcontrib>Becker, Amanda</creatorcontrib><creatorcontrib>Liu, Esther</creatorcontrib><creatorcontrib>Abecassis, Michael M</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><creatorcontrib>Thorp, Edward B</creatorcontrib><title>Immunometabolism of Phagocytes and Relationships to Cardiac Repair</title><title>Frontiers in cardiovascular medicine</title><addtitle>Front Cardiovasc Med</addtitle><description>Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.</description><subject>Cardiovascular Medicine</subject><subject>hypoxia</subject><subject>immunometabolism</subject><subject>macrophage</subject><subject>neutrophil</subject><subject>phagocyte</subject><subject>reperfusion</subject><issn>2297-055X</issn><issn>2297-055X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhkVpSEKSc27Fx152o2_bl0K79GMh0FJa6E2MNaNdBdvaSt5A_n292TQkJwnNq2dmeBi7FnypVNPeBH8_LCUX7ZJzruUbdi5lWy-4MX_evrifsatS7uaIMLoxtjllZ0pwJaUV5-zTehj2Yxpogi71sQxVCtWPLWySf5ioVDBi9ZN6mGIayzbuSjWlagUZI_i5sIOYL9lJgL7Q1dN5wX5_-fxr9W1x-_3revXxduGNNNPCSuBtQOSgTEONEaBFQC9qGxoOHap5Bd15ZbCDTkuDGNC0qIh8I4Tl6oKtj1xMcOd2OQ6QH1yC6B4fUt44yFP0PTkvCCUGIpC17mRoSFsg3SKYjhDUzPpwZO323UDoaZwy9K-grytj3LpNundW11zWYga8fwLk9HdPZXJDLJ76HkZK--KkFLauudVyjt4coz6nUjKF5zaCu4NIdxDpDiLdo8j5x7uX0z3n_2tT_wAIjpw2</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Zhang, Shuang</creator><creator>Bories, Gael</creator><creator>Lantz, Connor</creator><creator>Emmons, Russel</creator><creator>Becker, Amanda</creator><creator>Liu, Esther</creator><creator>Abecassis, Michael M</creator><creator>Yvan-Charvet, Laurent</creator><creator>Thorp, Edward B</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190411</creationdate><title>Immunometabolism of Phagocytes and Relationships to Cardiac Repair</title><author>Zhang, Shuang ; Bories, Gael ; Lantz, Connor ; Emmons, Russel ; Becker, Amanda ; Liu, Esther ; Abecassis, Michael M ; Yvan-Charvet, Laurent ; Thorp, Edward B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cardiovascular Medicine</topic><topic>hypoxia</topic><topic>immunometabolism</topic><topic>macrophage</topic><topic>neutrophil</topic><topic>phagocyte</topic><topic>reperfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Bories, Gael</creatorcontrib><creatorcontrib>Lantz, Connor</creatorcontrib><creatorcontrib>Emmons, Russel</creatorcontrib><creatorcontrib>Becker, Amanda</creatorcontrib><creatorcontrib>Liu, Esther</creatorcontrib><creatorcontrib>Abecassis, Michael M</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><creatorcontrib>Thorp, Edward B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuang</au><au>Bories, Gael</au><au>Lantz, Connor</au><au>Emmons, Russel</au><au>Becker, Amanda</au><au>Liu, Esther</au><au>Abecassis, Michael M</au><au>Yvan-Charvet, Laurent</au><au>Thorp, Edward B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immunometabolism of Phagocytes and Relationships to Cardiac Repair</atitle><jtitle>Frontiers in cardiovascular medicine</jtitle><addtitle>Front Cardiovasc Med</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>6</volume><spage>42</spage><epage>42</epage><pages>42-42</pages><issn>2297-055X</issn><eissn>2297-055X</eissn><abstract>Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31032261</pmid><doi>10.3389/fcvm.2019.00042</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2297-055X
ispartof Frontiers in cardiovascular medicine, 2019-04, Vol.6, p.42-42
issn 2297-055X
2297-055X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c1ed2dfeea274b2f8e46ae49da5beda3
source PubMed Central
subjects Cardiovascular Medicine
hypoxia
immunometabolism
macrophage
neutrophil
phagocyte
reperfusion
title Immunometabolism of Phagocytes and Relationships to Cardiac Repair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immunometabolism%20of%20Phagocytes%20and%20Relationships%20to%20Cardiac%20Repair&rft.jtitle=Frontiers%20in%20cardiovascular%20medicine&rft.au=Zhang,%20Shuang&rft.date=2019-04-11&rft.volume=6&rft.spage=42&rft.epage=42&rft.pages=42-42&rft.issn=2297-055X&rft.eissn=2297-055X&rft_id=info:doi/10.3389/fcvm.2019.00042&rft_dat=%3Cproquest_doaj_%3E2216770642%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-62a09fdd0a358e851a41fdc176f80abd30424bc35dbab425ddfd59d3eec811603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216770642&rft_id=info:pmid/31032261&rfr_iscdi=true