Loading…

CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2024-05, Vol.12
Main Authors: Aguillon, Raphael, Rinsky, Mieka, Simon-Blecher, Noa, Doniger, Tirza, Appelbaum, Lior, Levy, Oren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163
cites cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 12
creator Aguillon, Raphael
Rinsky, Mieka
Simon-Blecher, Noa
Doniger, Tirza
Appelbaum, Lior
Levy, Oren
description The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian , pacemaker gene transcript levels, including (the ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a allele mutant ( ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.
doi_str_mv 10.7554/eLife.89499
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970</doaj_id><sourcerecordid>3055452210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaEKSU-5loZdCcaqP0Uo6lWLaJNSQS1tyE7J2Niuzu0qltYv711e205BUFwm9n55m5hFyweilkhI-4iK0eKkNGPOKnHAq6YxquHv97HxMznNe0bIUaM3MG3IstAJBwZyQn_PF7fxbhZvYb7Cpwlj5MTQuBVdNscrb0XcpjuEPFmnCNLq-St126oZc_Q5TVzUB-wrHTSjUgONUdL_GfEaOWtdnPH_cT8mPr1--z69ni9urm_nnxcyDqqcZUI9SNEI6Jj3WS8YZU0vnS6UArUZomBRYA2rOuQPWaESjOGtAOFCsFqfk5uDbRLeyDykMLm1tdMHuL2K6ty5NwfdoPWuZQ2iV0OU5gFMgjTDGLz2TRtHi9eng9bBeDtj40k1y_QvTl8oYOnsfN5YxaoTUvDi8f3RI8VeZwmSHkD32vRsxrrMVtEQmOWe7z979h67iejfeHVVzLakUulAfDpRPMeeE7VM1jNpd_nafv93nX-i3zxt4Yv-lLf4CuxerRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062850538</pqid></control><display><type>article</type><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</creator><creatorcontrib>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</creatorcontrib><description>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian , pacemaker gene transcript levels, including (the ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a allele mutant ( ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.89499</identifier><identifier>PMID: 38743049</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Animals ; Behavior ; Biosphere ; Cell differentiation ; Cell division ; Circadian Clocks - genetics ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Clock gene ; CLOCK Proteins - genetics ; CLOCK Proteins - metabolism ; Cnidaria - genetics ; Cnidaria - physiology ; CRISPR ; Evolutionary Biology ; Gene expression ; Genetic engineering ; genetic mutant ; Genomes ; Genotype &amp; phenotype ; Hybridization ; Light ; light-pathway ; Nematostella vectensis ; Organisms ; Pacemakers ; Photoperiod ; Phylogenetics ; Polyps ; Polyps (organisms) ; Proteins ; Sea Anemones - genetics ; Sea Anemones - physiology ; transcriptome ; Transcriptomics</subject><ispartof>eLife, 2024-05, Vol.12</ispartof><rights>2023, Aguillon et al.</rights><rights>2023, Aguillon et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023, Aguillon et al 2023 Aguillon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</citedby><cites>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</cites><orcidid>0000-0002-1149-0362 ; 0000-0002-5478-6307 ; 0000-0002-9248-5919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062850538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062850538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguillon, Raphael</creatorcontrib><creatorcontrib>Rinsky, Mieka</creatorcontrib><creatorcontrib>Simon-Blecher, Noa</creatorcontrib><creatorcontrib>Doniger, Tirza</creatorcontrib><creatorcontrib>Appelbaum, Lior</creatorcontrib><creatorcontrib>Levy, Oren</creatorcontrib><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><title>eLife</title><addtitle>Elife</addtitle><description>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian , pacemaker gene transcript levels, including (the ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a allele mutant ( ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</description><subject>Animals</subject><subject>Behavior</subject><subject>Biosphere</subject><subject>Cell differentiation</subject><subject>Cell division</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Clock gene</subject><subject>CLOCK Proteins - genetics</subject><subject>CLOCK Proteins - metabolism</subject><subject>Cnidaria - genetics</subject><subject>Cnidaria - physiology</subject><subject>CRISPR</subject><subject>Evolutionary Biology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>genetic mutant</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Hybridization</subject><subject>Light</subject><subject>light-pathway</subject><subject>Nematostella vectensis</subject><subject>Organisms</subject><subject>Pacemakers</subject><subject>Photoperiod</subject><subject>Phylogenetics</subject><subject>Polyps</subject><subject>Polyps (organisms)</subject><subject>Proteins</subject><subject>Sea Anemones - genetics</subject><subject>Sea Anemones - physiology</subject><subject>transcriptome</subject><subject>Transcriptomics</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1rGzEQxUVpaEKSU-5loZdCcaqP0Uo6lWLaJNSQS1tyE7J2Niuzu0qltYv711e205BUFwm9n55m5hFyweilkhI-4iK0eKkNGPOKnHAq6YxquHv97HxMznNe0bIUaM3MG3IstAJBwZyQn_PF7fxbhZvYb7Cpwlj5MTQuBVdNscrb0XcpjuEPFmnCNLq-St126oZc_Q5TVzUB-wrHTSjUgONUdL_GfEaOWtdnPH_cT8mPr1--z69ni9urm_nnxcyDqqcZUI9SNEI6Jj3WS8YZU0vnS6UArUZomBRYA2rOuQPWaESjOGtAOFCsFqfk5uDbRLeyDykMLm1tdMHuL2K6ty5NwfdoPWuZQ2iV0OU5gFMgjTDGLz2TRtHi9eng9bBeDtj40k1y_QvTl8oYOnsfN5YxaoTUvDi8f3RI8VeZwmSHkD32vRsxrrMVtEQmOWe7z979h67iejfeHVVzLakUulAfDpRPMeeE7VM1jNpd_nafv93nX-i3zxt4Yv-lLf4CuxerRQ</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Aguillon, Raphael</creator><creator>Rinsky, Mieka</creator><creator>Simon-Blecher, Noa</creator><creator>Doniger, Tirza</creator><creator>Appelbaum, Lior</creator><creator>Levy, Oren</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1149-0362</orcidid><orcidid>https://orcid.org/0000-0002-5478-6307</orcidid><orcidid>https://orcid.org/0000-0002-9248-5919</orcidid></search><sort><creationdate>20240514</creationdate><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><author>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Biosphere</topic><topic>Cell differentiation</topic><topic>Cell division</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Clock gene</topic><topic>CLOCK Proteins - genetics</topic><topic>CLOCK Proteins - metabolism</topic><topic>Cnidaria - genetics</topic><topic>Cnidaria - physiology</topic><topic>CRISPR</topic><topic>Evolutionary Biology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>genetic mutant</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Hybridization</topic><topic>Light</topic><topic>light-pathway</topic><topic>Nematostella vectensis</topic><topic>Organisms</topic><topic>Pacemakers</topic><topic>Photoperiod</topic><topic>Phylogenetics</topic><topic>Polyps</topic><topic>Polyps (organisms)</topic><topic>Proteins</topic><topic>Sea Anemones - genetics</topic><topic>Sea Anemones - physiology</topic><topic>transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguillon, Raphael</creatorcontrib><creatorcontrib>Rinsky, Mieka</creatorcontrib><creatorcontrib>Simon-Blecher, Noa</creatorcontrib><creatorcontrib>Doniger, Tirza</creatorcontrib><creatorcontrib>Appelbaum, Lior</creatorcontrib><creatorcontrib>Levy, Oren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguillon, Raphael</au><au>Rinsky, Mieka</au><au>Simon-Blecher, Noa</au><au>Doniger, Tirza</au><au>Appelbaum, Lior</au><au>Levy, Oren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>12</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian , pacemaker gene transcript levels, including (the ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a allele mutant ( ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>38743049</pmid><doi>10.7554/eLife.89499</doi><orcidid>https://orcid.org/0000-0002-1149-0362</orcidid><orcidid>https://orcid.org/0000-0002-5478-6307</orcidid><orcidid>https://orcid.org/0000-0002-9248-5919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2024-05, Vol.12
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970
source Open Access: PubMed Central; Publicly Available Content Database
subjects Animals
Behavior
Biosphere
Cell differentiation
Cell division
Circadian Clocks - genetics
Circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Clock gene
CLOCK Proteins - genetics
CLOCK Proteins - metabolism
Cnidaria - genetics
Cnidaria - physiology
CRISPR
Evolutionary Biology
Gene expression
Genetic engineering
genetic mutant
Genomes
Genotype & phenotype
Hybridization
Light
light-pathway
Nematostella vectensis
Organisms
Pacemakers
Photoperiod
Phylogenetics
Polyps
Polyps (organisms)
Proteins
Sea Anemones - genetics
Sea Anemones - physiology
transcriptome
Transcriptomics
title CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLOCK%20evolved%20in%20cnidaria%20to%20synchronize%20internal%20rhythms%20with%20diel%20environmental%20cues&rft.jtitle=eLife&rft.au=Aguillon,%20Raphael&rft.date=2024-05-14&rft.volume=12&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.89499&rft_dat=%3Cproquest_doaj_%3E3055452210%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062850538&rft_id=info:pmid/38743049&rfr_iscdi=true