Loading…
CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues
The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional...
Saved in:
Published in: | eLife 2024-05, Vol.12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 12 |
creator | Aguillon, Raphael Rinsky, Mieka Simon-Blecher, Noa Doniger, Tirza Appelbaum, Lior Levy, Oren |
description | The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian
, pacemaker gene transcript levels, including
(the
ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a
allele mutant (
), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD,
polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the
polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the
gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere. |
doi_str_mv | 10.7554/eLife.89499 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970</doaj_id><sourcerecordid>3055452210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaEKSU-5loZdCcaqP0Uo6lWLaJNSQS1tyE7J2Niuzu0qltYv711e205BUFwm9n55m5hFyweilkhI-4iK0eKkNGPOKnHAq6YxquHv97HxMznNe0bIUaM3MG3IstAJBwZyQn_PF7fxbhZvYb7Cpwlj5MTQuBVdNscrb0XcpjuEPFmnCNLq-St126oZc_Q5TVzUB-wrHTSjUgONUdL_GfEaOWtdnPH_cT8mPr1--z69ni9urm_nnxcyDqqcZUI9SNEI6Jj3WS8YZU0vnS6UArUZomBRYA2rOuQPWaESjOGtAOFCsFqfk5uDbRLeyDykMLm1tdMHuL2K6ty5NwfdoPWuZQ2iV0OU5gFMgjTDGLz2TRtHi9eng9bBeDtj40k1y_QvTl8oYOnsfN5YxaoTUvDi8f3RI8VeZwmSHkD32vRsxrrMVtEQmOWe7z979h67iejfeHVVzLakUulAfDpRPMeeE7VM1jNpd_nafv93nX-i3zxt4Yv-lLf4CuxerRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062850538</pqid></control><display><type>article</type><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</creator><creatorcontrib>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</creatorcontrib><description>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian
, pacemaker gene transcript levels, including
(the
ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a
allele mutant (
), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD,
polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the
polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the
gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.89499</identifier><identifier>PMID: 38743049</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Animals ; Behavior ; Biosphere ; Cell differentiation ; Cell division ; Circadian Clocks - genetics ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Clock gene ; CLOCK Proteins - genetics ; CLOCK Proteins - metabolism ; Cnidaria - genetics ; Cnidaria - physiology ; CRISPR ; Evolutionary Biology ; Gene expression ; Genetic engineering ; genetic mutant ; Genomes ; Genotype & phenotype ; Hybridization ; Light ; light-pathway ; Nematostella vectensis ; Organisms ; Pacemakers ; Photoperiod ; Phylogenetics ; Polyps ; Polyps (organisms) ; Proteins ; Sea Anemones - genetics ; Sea Anemones - physiology ; transcriptome ; Transcriptomics</subject><ispartof>eLife, 2024-05, Vol.12</ispartof><rights>2023, Aguillon et al.</rights><rights>2023, Aguillon et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023, Aguillon et al 2023 Aguillon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</citedby><cites>FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</cites><orcidid>0000-0002-1149-0362 ; 0000-0002-5478-6307 ; 0000-0002-9248-5919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062850538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062850538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguillon, Raphael</creatorcontrib><creatorcontrib>Rinsky, Mieka</creatorcontrib><creatorcontrib>Simon-Blecher, Noa</creatorcontrib><creatorcontrib>Doniger, Tirza</creatorcontrib><creatorcontrib>Appelbaum, Lior</creatorcontrib><creatorcontrib>Levy, Oren</creatorcontrib><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><title>eLife</title><addtitle>Elife</addtitle><description>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian
, pacemaker gene transcript levels, including
(the
ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a
allele mutant (
), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD,
polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the
polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the
gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</description><subject>Animals</subject><subject>Behavior</subject><subject>Biosphere</subject><subject>Cell differentiation</subject><subject>Cell division</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Clock gene</subject><subject>CLOCK Proteins - genetics</subject><subject>CLOCK Proteins - metabolism</subject><subject>Cnidaria - genetics</subject><subject>Cnidaria - physiology</subject><subject>CRISPR</subject><subject>Evolutionary Biology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>genetic mutant</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Hybridization</subject><subject>Light</subject><subject>light-pathway</subject><subject>Nematostella vectensis</subject><subject>Organisms</subject><subject>Pacemakers</subject><subject>Photoperiod</subject><subject>Phylogenetics</subject><subject>Polyps</subject><subject>Polyps (organisms)</subject><subject>Proteins</subject><subject>Sea Anemones - genetics</subject><subject>Sea Anemones - physiology</subject><subject>transcriptome</subject><subject>Transcriptomics</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1rGzEQxUVpaEKSU-5loZdCcaqP0Uo6lWLaJNSQS1tyE7J2Niuzu0qltYv711e205BUFwm9n55m5hFyweilkhI-4iK0eKkNGPOKnHAq6YxquHv97HxMznNe0bIUaM3MG3IstAJBwZyQn_PF7fxbhZvYb7Cpwlj5MTQuBVdNscrb0XcpjuEPFmnCNLq-St126oZc_Q5TVzUB-wrHTSjUgONUdL_GfEaOWtdnPH_cT8mPr1--z69ni9urm_nnxcyDqqcZUI9SNEI6Jj3WS8YZU0vnS6UArUZomBRYA2rOuQPWaESjOGtAOFCsFqfk5uDbRLeyDykMLm1tdMHuL2K6ty5NwfdoPWuZQ2iV0OU5gFMgjTDGLz2TRtHi9eng9bBeDtj40k1y_QvTl8oYOnsfN5YxaoTUvDi8f3RI8VeZwmSHkD32vRsxrrMVtEQmOWe7z979h67iejfeHVVzLakUulAfDpRPMeeE7VM1jNpd_nafv93nX-i3zxt4Yv-lLf4CuxerRQ</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Aguillon, Raphael</creator><creator>Rinsky, Mieka</creator><creator>Simon-Blecher, Noa</creator><creator>Doniger, Tirza</creator><creator>Appelbaum, Lior</creator><creator>Levy, Oren</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1149-0362</orcidid><orcidid>https://orcid.org/0000-0002-5478-6307</orcidid><orcidid>https://orcid.org/0000-0002-9248-5919</orcidid></search><sort><creationdate>20240514</creationdate><title>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</title><author>Aguillon, Raphael ; Rinsky, Mieka ; Simon-Blecher, Noa ; Doniger, Tirza ; Appelbaum, Lior ; Levy, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Biosphere</topic><topic>Cell differentiation</topic><topic>Cell division</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Clock gene</topic><topic>CLOCK Proteins - genetics</topic><topic>CLOCK Proteins - metabolism</topic><topic>Cnidaria - genetics</topic><topic>Cnidaria - physiology</topic><topic>CRISPR</topic><topic>Evolutionary Biology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>genetic mutant</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Hybridization</topic><topic>Light</topic><topic>light-pathway</topic><topic>Nematostella vectensis</topic><topic>Organisms</topic><topic>Pacemakers</topic><topic>Photoperiod</topic><topic>Phylogenetics</topic><topic>Polyps</topic><topic>Polyps (organisms)</topic><topic>Proteins</topic><topic>Sea Anemones - genetics</topic><topic>Sea Anemones - physiology</topic><topic>transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguillon, Raphael</creatorcontrib><creatorcontrib>Rinsky, Mieka</creatorcontrib><creatorcontrib>Simon-Blecher, Noa</creatorcontrib><creatorcontrib>Doniger, Tirza</creatorcontrib><creatorcontrib>Appelbaum, Lior</creatorcontrib><creatorcontrib>Levy, Oren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguillon, Raphael</au><au>Rinsky, Mieka</au><au>Simon-Blecher, Noa</au><au>Doniger, Tirza</au><au>Appelbaum, Lior</au><au>Levy, Oren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>12</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian
, pacemaker gene transcript levels, including
(the
ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a
allele mutant (
), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD,
polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the
polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the
gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>38743049</pmid><doi>10.7554/eLife.89499</doi><orcidid>https://orcid.org/0000-0002-1149-0362</orcidid><orcidid>https://orcid.org/0000-0002-5478-6307</orcidid><orcidid>https://orcid.org/0000-0002-9248-5919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2024-05, Vol.12 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c1f1ae4f738d4344a7459399cbc15970 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Animals Behavior Biosphere Cell differentiation Cell division Circadian Clocks - genetics Circadian rhythm Circadian Rhythm - genetics Circadian rhythms Clock gene CLOCK Proteins - genetics CLOCK Proteins - metabolism Cnidaria - genetics Cnidaria - physiology CRISPR Evolutionary Biology Gene expression Genetic engineering genetic mutant Genomes Genotype & phenotype Hybridization Light light-pathway Nematostella vectensis Organisms Pacemakers Photoperiod Phylogenetics Polyps Polyps (organisms) Proteins Sea Anemones - genetics Sea Anemones - physiology transcriptome Transcriptomics |
title | CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLOCK%20evolved%20in%20cnidaria%20to%20synchronize%20internal%20rhythms%20with%20diel%20environmental%20cues&rft.jtitle=eLife&rft.au=Aguillon,%20Raphael&rft.date=2024-05-14&rft.volume=12&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.89499&rft_dat=%3Cproquest_doaj_%3E3055452210%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-40ce53d35a15ce6b12117bac07444f8e4d153e64e8222a41d8ee9721d43a47163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062850538&rft_id=info:pmid/38743049&rfr_iscdi=true |