Loading…

Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection

It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry-Perot resonators consisting of two spatially distributed "mirrors" for detecting gravitational waves is proposed. It is shown that t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-03, Vol.21 (5), p.1877
Main Authors: Petrov, Nikolai, Pustovoit, Vladislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583
cites cdi_FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583
container_end_page
container_issue 5
container_start_page 1877
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Petrov, Nikolai
Pustovoit, Vladislav
description It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry-Perot resonators consisting of two spatially distributed "mirrors" for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10 cm can be achieved at a distance between mirrors of only 1-3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach-Zehnder interferometer.
doi_str_mv 10.3390/s21051877
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2239de542834ff4998969833908fb3f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2239de542834ff4998969833908fb3f</doaj_id><sourcerecordid>2501791327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583</originalsourceid><addsrcrecordid>eNpdkV9PFDEUxRujEVh98AuYSXyBh5H-m077YmJAcBMSjGh4bDqdW-hmZoptdw1-ejssbsCXtjn93dPTexF6R_BHxhQ-TpTghsi2fYH2Cae8lpTil0_Oe-ggpRXGlDEmX6O9smJMlNhH11ejGYb6yv-BvlpOGaKDGEYoh-q3z7fVmeniff2tiLn6DilMJoeYKhdidR7NxmeTfRGH6tpsoDothXYW3qBXzgwJ3j7uC_Tz7MuPk6_1xeX58uTzRW25ULkWQDl0BlPesK4F0TBoWkJMZ5hjlrCSErfcWSqEANxzpxhvOO0k5qbHjWQLtNz69sGs9F30o4n3OhivH4QQb7SJ2dsBtKWUqR5KuWTcOa6UVELJuYPSdeW9Bfq09bpbdyP0FqYczfDM9PnN5G_1TdjoVgnKOS4Gh48GMfxaQ8p69MnCMJgJwjpp2mA5f4_N6If_0FVYx9LHB4q0ijDaFupoS9kYUorgdmEI1nNwvRt9Yd8_Tb8j_82a_QWgoKeZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501791327</pqid></control><display><type>article</type><title>Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Petrov, Nikolai ; Pustovoit, Vladislav</creator><creatorcontrib>Petrov, Nikolai ; Pustovoit, Vladislav</creatorcontrib><description>It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry-Perot resonators consisting of two spatially distributed "mirrors" for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10 cm can be achieved at a distance between mirrors of only 1-3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach-Zehnder interferometer.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21051877</identifier><identifier>PMID: 33800196</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Communication ; Correlation analysis ; Electromagnetic absorption ; Fabry–Perot resonator ; frequency shift ; gravitational wave detection ; Gravitational waves ; Lasers ; Light ; Mach-Zehnder interferometers ; Mach–Zehnder interferometer ; Noise ; periodic diffraction structure ; Protective coatings ; Resonators ; Sensors ; Spectral resolution</subject><ispartof>Sensors (Basel, Switzerland), 2021-03, Vol.21 (5), p.1877</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583</citedby><cites>FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583</cites><orcidid>0000-0003-0268-4728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2501791327/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2501791327?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33800196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, Nikolai</creatorcontrib><creatorcontrib>Pustovoit, Vladislav</creatorcontrib><title>Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry-Perot resonators consisting of two spatially distributed "mirrors" for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10 cm can be achieved at a distance between mirrors of only 1-3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach-Zehnder interferometer.</description><subject>Communication</subject><subject>Correlation analysis</subject><subject>Electromagnetic absorption</subject><subject>Fabry–Perot resonator</subject><subject>frequency shift</subject><subject>gravitational wave detection</subject><subject>Gravitational waves</subject><subject>Lasers</subject><subject>Light</subject><subject>Mach-Zehnder interferometers</subject><subject>Mach–Zehnder interferometer</subject><subject>Noise</subject><subject>periodic diffraction structure</subject><subject>Protective coatings</subject><subject>Resonators</subject><subject>Sensors</subject><subject>Spectral resolution</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV9PFDEUxRujEVh98AuYSXyBh5H-m077YmJAcBMSjGh4bDqdW-hmZoptdw1-ejssbsCXtjn93dPTexF6R_BHxhQ-TpTghsi2fYH2Cae8lpTil0_Oe-ggpRXGlDEmX6O9smJMlNhH11ejGYb6yv-BvlpOGaKDGEYoh-q3z7fVmeniff2tiLn6DilMJoeYKhdidR7NxmeTfRGH6tpsoDothXYW3qBXzgwJ3j7uC_Tz7MuPk6_1xeX58uTzRW25ULkWQDl0BlPesK4F0TBoWkJMZ5hjlrCSErfcWSqEANxzpxhvOO0k5qbHjWQLtNz69sGs9F30o4n3OhivH4QQb7SJ2dsBtKWUqR5KuWTcOa6UVELJuYPSdeW9Bfq09bpbdyP0FqYczfDM9PnN5G_1TdjoVgnKOS4Gh48GMfxaQ8p69MnCMJgJwjpp2mA5f4_N6If_0FVYx9LHB4q0ijDaFupoS9kYUorgdmEI1nNwvRt9Yd8_Tb8j_82a_QWgoKeZ</recordid><startdate>20210308</startdate><enddate>20210308</enddate><creator>Petrov, Nikolai</creator><creator>Pustovoit, Vladislav</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0268-4728</orcidid></search><sort><creationdate>20210308</creationdate><title>Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection</title><author>Petrov, Nikolai ; Pustovoit, Vladislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Correlation analysis</topic><topic>Electromagnetic absorption</topic><topic>Fabry–Perot resonator</topic><topic>frequency shift</topic><topic>gravitational wave detection</topic><topic>Gravitational waves</topic><topic>Lasers</topic><topic>Light</topic><topic>Mach-Zehnder interferometers</topic><topic>Mach–Zehnder interferometer</topic><topic>Noise</topic><topic>periodic diffraction structure</topic><topic>Protective coatings</topic><topic>Resonators</topic><topic>Sensors</topic><topic>Spectral resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrov, Nikolai</creatorcontrib><creatorcontrib>Pustovoit, Vladislav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, Nikolai</au><au>Pustovoit, Vladislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-03-08</date><risdate>2021</risdate><volume>21</volume><issue>5</issue><spage>1877</spage><pages>1877-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry-Perot resonators consisting of two spatially distributed "mirrors" for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10 cm can be achieved at a distance between mirrors of only 1-3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach-Zehnder interferometer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33800196</pmid><doi>10.3390/s21051877</doi><orcidid>https://orcid.org/0000-0003-0268-4728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-03, Vol.21 (5), p.1877
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2239de542834ff4998969833908fb3f
source Publicly Available Content Database; PubMed Central
subjects Communication
Correlation analysis
Electromagnetic absorption
Fabry–Perot resonator
frequency shift
gravitational wave detection
Gravitational waves
Lasers
Light
Mach-Zehnder interferometers
Mach–Zehnder interferometer
Noise
periodic diffraction structure
Protective coatings
Resonators
Sensors
Spectral resolution
title Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Sized%20Interferometer%20with%20Fabry-Perot%20Resonators%20for%20Gravitational%20Wave%20Detection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Petrov,%20Nikolai&rft.date=2021-03-08&rft.volume=21&rft.issue=5&rft.spage=1877&rft.pages=1877-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21051877&rft_dat=%3Cproquest_doaj_%3E2501791327%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-6e24eba02453b7e653e5711aba3f3c13001074fc2666e0d4f934542b804ad0583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501791327&rft_id=info:pmid/33800196&rfr_iscdi=true