Loading…
Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis
The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make...
Saved in:
Published in: | Nature communications 2020-01, Vol.11 (1), p.509-509, Article 509 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973 |
container_end_page | 509 |
container_issue | 1 |
container_start_page | 509 |
container_title | Nature communications |
container_volume | 11 |
creator | Stockmann, Paul N. Van Opdenbosch, Daniel Poethig, Alexander Pastoetter, Dominik L. Hoehenberger, Moritz Lessig, Sebastian Raab, Johannes Woelbing, Marion Falcke, Claudia Winnacker, Malte Zollfrank, Cordt Strittmatter, Harald Sieber, Volker |
description | The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Bio‐based compounds often suffer from high production cost and low performance when used to synthesise macromolecules. Here the authors show the conversion of (+)‐3‐ carene, a by‐product of the cellulose industry, into its ε‐lactams and then to polyamides with high‐performance thermal properties. |
doi_str_mv | 10.1038/s41467-020-14361-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2456850ff2b4580a0079dd6b1747632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2456850ff2b4580a0079dd6b1747632</doaj_id><sourcerecordid>2344544496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_Dj2ok3SFDxqFSJDawtx76ZeOTEg50Zaf59PU0pLQu88evcz_bxqarXlLynhHcfMlCQbUMYaShwSRv5rDpnBGhDW8afPxqfVZc5b0lpXNEO4GV1xqnqiAR2Xh0--9ibjK62o08m1Bkn39h0zIsJwc9Yx1SbKabdGPe5Hv1mbHaYhpgmM1usdzEczeQd5trMrl5G9KnO1gTTB6zzggljxoB28YcyP85FkX1-Vb0YTMh4ed9fVL--fvl59b25-fHt-urTTWMFkKWhA-86RQw1YJRSTCBxHRsE9KxjyhYfjAALCtpBAqU9dwNHBx0xUvFetfyiul65Lpqt3iU_mXTU0Xh9txDTRpu0eBtQWwZCdoIMA-tBFAQhrXJO9rSFVnJWWB9X1m7fT-gszksx7An06c7sR72JBy1VRxnnBfDuHpDi7z3mRU8-WwzBzFjM1YyDEOVbgBbp23-k27hPc7HqpAIBAEoWFVtVNsWcEw4Pl6FEn1Ki15TokhJ9lxJ9Knrz-BkPJX8yUQR8FeSyNW8w_T37P9hbq7jI2g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344544496</pqid></control><display><type>article</type><title>Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis</title><source>PubMed Central (Open Access)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Stockmann, Paul N. ; Van Opdenbosch, Daniel ; Poethig, Alexander ; Pastoetter, Dominik L. ; Hoehenberger, Moritz ; Lessig, Sebastian ; Raab, Johannes ; Woelbing, Marion ; Falcke, Claudia ; Winnacker, Malte ; Zollfrank, Cordt ; Strittmatter, Harald ; Sieber, Volker</creator><creatorcontrib>Stockmann, Paul N. ; Van Opdenbosch, Daniel ; Poethig, Alexander ; Pastoetter, Dominik L. ; Hoehenberger, Moritz ; Lessig, Sebastian ; Raab, Johannes ; Woelbing, Marion ; Falcke, Claudia ; Winnacker, Malte ; Zollfrank, Cordt ; Strittmatter, Harald ; Sieber, Volker</creatorcontrib><description>The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Bio‐based compounds often suffer from high production cost and low performance when used to synthesise macromolecules. Here the authors show the conversion of (+)‐3‐ carene, a by‐product of the cellulose industry, into its ε‐lactams and then to polyamides with high‐performance thermal properties.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14361-6</identifier><identifier>PMID: 31980642</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3-Carene ; 639/638/403/935 ; 639/638/455/953 ; 639/638/455/958 ; 639/638/549/941 ; Caprolactam ; Catalysis ; Cellulose ; Chemical synthesis ; Chromatography, Gel ; Conversion ; Crystal structure ; Crystallinity ; Crystallization ; Crystallography, X-Ray ; Green chemistry ; Humanities and Social Sciences ; Lactams - chemistry ; Macromolecules ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; multidisciplinary ; Nylons - chemical synthesis ; Nylons - chemistry ; Organic chemistry ; Oxidation ; Polyamide resins ; Polyamides ; Polymerization ; Polymers ; Production costs ; Science ; Science (multidisciplinary) ; Stereoisomerism ; Stereoselectivity ; Temperature ; Thermal properties ; Thermodynamic properties</subject><ispartof>Nature communications, 2020-01, Vol.11 (1), p.509-509, Article 509</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973</citedby><cites>FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973</cites><orcidid>0000-0001-5458-9330 ; 0000-0001-8604-8723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2344544496/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2344544496?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31980642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockmann, Paul N.</creatorcontrib><creatorcontrib>Van Opdenbosch, Daniel</creatorcontrib><creatorcontrib>Poethig, Alexander</creatorcontrib><creatorcontrib>Pastoetter, Dominik L.</creatorcontrib><creatorcontrib>Hoehenberger, Moritz</creatorcontrib><creatorcontrib>Lessig, Sebastian</creatorcontrib><creatorcontrib>Raab, Johannes</creatorcontrib><creatorcontrib>Woelbing, Marion</creatorcontrib><creatorcontrib>Falcke, Claudia</creatorcontrib><creatorcontrib>Winnacker, Malte</creatorcontrib><creatorcontrib>Zollfrank, Cordt</creatorcontrib><creatorcontrib>Strittmatter, Harald</creatorcontrib><creatorcontrib>Sieber, Volker</creatorcontrib><title>Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Bio‐based compounds often suffer from high production cost and low performance when used to synthesise macromolecules. Here the authors show the conversion of (+)‐3‐ carene, a by‐product of the cellulose industry, into its ε‐lactams and then to polyamides with high‐performance thermal properties.</description><subject>3-Carene</subject><subject>639/638/403/935</subject><subject>639/638/455/953</subject><subject>639/638/455/958</subject><subject>639/638/549/941</subject><subject>Caprolactam</subject><subject>Catalysis</subject><subject>Cellulose</subject><subject>Chemical synthesis</subject><subject>Chromatography, Gel</subject><subject>Conversion</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Green chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Lactams - chemistry</subject><subject>Macromolecules</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Conformation</subject><subject>multidisciplinary</subject><subject>Nylons - chemical synthesis</subject><subject>Nylons - chemistry</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Production costs</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stereoisomerism</subject><subject>Stereoselectivity</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_Dj2ok3SFDxqFSJDawtx76ZeOTEg50Zaf59PU0pLQu88evcz_bxqarXlLynhHcfMlCQbUMYaShwSRv5rDpnBGhDW8afPxqfVZc5b0lpXNEO4GV1xqnqiAR2Xh0--9ibjK62o08m1Bkn39h0zIsJwc9Yx1SbKabdGPe5Hv1mbHaYhpgmM1usdzEczeQd5trMrl5G9KnO1gTTB6zzggljxoB28YcyP85FkX1-Vb0YTMh4ed9fVL--fvl59b25-fHt-urTTWMFkKWhA-86RQw1YJRSTCBxHRsE9KxjyhYfjAALCtpBAqU9dwNHBx0xUvFetfyiul65Lpqt3iU_mXTU0Xh9txDTRpu0eBtQWwZCdoIMA-tBFAQhrXJO9rSFVnJWWB9X1m7fT-gszksx7An06c7sR72JBy1VRxnnBfDuHpDi7z3mRU8-WwzBzFjM1YyDEOVbgBbp23-k27hPc7HqpAIBAEoWFVtVNsWcEw4Pl6FEn1Ki15TokhJ9lxJ9Knrz-BkPJX8yUQR8FeSyNW8w_T37P9hbq7jI2g</recordid><startdate>20200124</startdate><enddate>20200124</enddate><creator>Stockmann, Paul N.</creator><creator>Van Opdenbosch, Daniel</creator><creator>Poethig, Alexander</creator><creator>Pastoetter, Dominik L.</creator><creator>Hoehenberger, Moritz</creator><creator>Lessig, Sebastian</creator><creator>Raab, Johannes</creator><creator>Woelbing, Marion</creator><creator>Falcke, Claudia</creator><creator>Winnacker, Malte</creator><creator>Zollfrank, Cordt</creator><creator>Strittmatter, Harald</creator><creator>Sieber, Volker</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5458-9330</orcidid><orcidid>https://orcid.org/0000-0001-8604-8723</orcidid></search><sort><creationdate>20200124</creationdate><title>Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis</title><author>Stockmann, Paul N. ; Van Opdenbosch, Daniel ; Poethig, Alexander ; Pastoetter, Dominik L. ; Hoehenberger, Moritz ; Lessig, Sebastian ; Raab, Johannes ; Woelbing, Marion ; Falcke, Claudia ; Winnacker, Malte ; Zollfrank, Cordt ; Strittmatter, Harald ; Sieber, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-Carene</topic><topic>639/638/403/935</topic><topic>639/638/455/953</topic><topic>639/638/455/958</topic><topic>639/638/549/941</topic><topic>Caprolactam</topic><topic>Catalysis</topic><topic>Cellulose</topic><topic>Chemical synthesis</topic><topic>Chromatography, Gel</topic><topic>Conversion</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Green chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Lactams - chemistry</topic><topic>Macromolecules</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Conformation</topic><topic>multidisciplinary</topic><topic>Nylons - chemical synthesis</topic><topic>Nylons - chemistry</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Production costs</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stereoisomerism</topic><topic>Stereoselectivity</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockmann, Paul N.</creatorcontrib><creatorcontrib>Van Opdenbosch, Daniel</creatorcontrib><creatorcontrib>Poethig, Alexander</creatorcontrib><creatorcontrib>Pastoetter, Dominik L.</creatorcontrib><creatorcontrib>Hoehenberger, Moritz</creatorcontrib><creatorcontrib>Lessig, Sebastian</creatorcontrib><creatorcontrib>Raab, Johannes</creatorcontrib><creatorcontrib>Woelbing, Marion</creatorcontrib><creatorcontrib>Falcke, Claudia</creatorcontrib><creatorcontrib>Winnacker, Malte</creatorcontrib><creatorcontrib>Zollfrank, Cordt</creatorcontrib><creatorcontrib>Strittmatter, Harald</creatorcontrib><creatorcontrib>Sieber, Volker</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockmann, Paul N.</au><au>Van Opdenbosch, Daniel</au><au>Poethig, Alexander</au><au>Pastoetter, Dominik L.</au><au>Hoehenberger, Moritz</au><au>Lessig, Sebastian</au><au>Raab, Johannes</au><au>Woelbing, Marion</au><au>Falcke, Claudia</au><au>Winnacker, Malte</au><au>Zollfrank, Cordt</au><au>Strittmatter, Harald</au><au>Sieber, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-01-24</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>509</spage><epage>509</epage><pages>509-509</pages><artnum>509</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Bio‐based compounds often suffer from high production cost and low performance when used to synthesise macromolecules. Here the authors show the conversion of (+)‐3‐ carene, a by‐product of the cellulose industry, into its ε‐lactams and then to polyamides with high‐performance thermal properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31980642</pmid><doi>10.1038/s41467-020-14361-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5458-9330</orcidid><orcidid>https://orcid.org/0000-0001-8604-8723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-01, Vol.11 (1), p.509-509, Article 509 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c2456850ff2b4580a0079dd6b1747632 |
source | PubMed Central (Open Access); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 3-Carene 639/638/403/935 639/638/455/953 639/638/455/958 639/638/549/941 Caprolactam Catalysis Cellulose Chemical synthesis Chromatography, Gel Conversion Crystal structure Crystallinity Crystallization Crystallography, X-Ray Green chemistry Humanities and Social Sciences Lactams - chemistry Macromolecules Magnetic Resonance Spectroscopy Molecular Conformation multidisciplinary Nylons - chemical synthesis Nylons - chemistry Organic chemistry Oxidation Polyamide resins Polyamides Polymerization Polymers Production costs Science Science (multidisciplinary) Stereoisomerism Stereoselectivity Temperature Thermal properties Thermodynamic properties |
title | Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biobased%20chiral%20semi-crystalline%20or%20amorphous%20high-performance%20polyamides%20and%20their%20scalable%20stereoselective%20synthesis&rft.jtitle=Nature%20communications&rft.au=Stockmann,%20Paul%20N.&rft.date=2020-01-24&rft.volume=11&rft.issue=1&rft.spage=509&rft.epage=509&rft.pages=509-509&rft.artnum=509&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14361-6&rft_dat=%3Cproquest_doaj_%3E2344544496%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-1f38890a1a4a99925e0d82f54b2829c038a54c4947f6411b3df3ed480a693b973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344544496&rft_id=info:pmid/31980642&rfr_iscdi=true |