Loading…
Mid-infrared supercontinuum-based Fourier transform spectroscopy for plasma analysis
Broadband mid-infrared (MIR) spectroscopy is a well-established and valuable diagnostic technique for reactive plasmas. Plasmas are complex systems and consist of numerous (reactive) types of molecules; it is challenging to measure and control reaction specificity with a good sensitivity. Here, we d...
Saved in:
Published in: | Scientific reports 2022-06, Vol.12 (1), p.9642-9642, Article 9642 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Broadband mid-infrared (MIR) spectroscopy is a well-established and valuable diagnostic technique for reactive plasmas. Plasmas are complex systems and consist of numerous (reactive) types of molecules; it is challenging to measure and control reaction specificity with a good sensitivity. Here, we demonstrate the first use of a novel MIR supercontinuum (SC) source for quantitative plasma spectroscopy. The SC source has a wide spectral coverage of 1300–2700 cm
−1
(wavelength range 3.7–7.7 μm), thus enabling broadband multispecies detection. The high spatial coherence of the MIR SC source provides long interaction path lengths, thereby increasing the sensitivity for molecular species. The combination of such a SC source with a custom-built FTIR spectrometer (0.1 cm
−1
spectral resolution) allows detection of various gases with high spectral resolution. We demonstrate its potential in plasma applications by accurate identification and quantification of a variety of reaction products (e.g. nitrogen oxides and carbon oxides) under low-pressure conditions, including the molecular species with overlapping absorbance features (e.g. acetone, acetaldehyde, formaldehyde, etc.). |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-13787-w |