Loading…
New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions
The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we de...
Saved in:
Published in: | Mathematics (Basel) 2019-09, Vol.7 (9), p.813 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3 |
container_end_page | |
container_issue | 9 |
container_start_page | 813 |
container_title | Mathematics (Basel) |
container_volume | 7 |
creator | Korkiatsakul, Thanon Koonprasert, Sanoe Neamprem, Khomsan |
description | The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times. |
doi_str_mv | 10.3390/math7090813 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f</doaj_id><sourcerecordid>2548650795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqCf_QMCjVPPVpjnq4seiqODHNaRJqlm7HU3SlT351826Is7lDW_evBlmiuKA4GPGJD6Z6_QqsMQNYRvFDqVUlCLzm__y7WI_xhnOIQlruNwpvm7dJzoddL9M3ugePUA_Jg9DRB0E9OjnrrwI2qyoXL2Gfg4vEGBR3ruUIb4ty3sf38YBFuj8Y9QrIfr06RU96-BdWiLo0HTwyef2MxgHq8MSTWCw_mfMXrHV6T66_V_cLZ4uzh8nV-XN3eV0cnpTGlbzVHIuOeW0lVYT1rGGGiKEw8YaSRtimtpZLJgxmBhR1xla11JaiVZKayvcsd1iuva1oGfqPfh53kOB9uqHgPCidMgn6J0ytJaS405gQXjLcaupsFhXHRekMXzldbj2eg_wMbqY1AzGkO8TFa14U1dYyCqrjtYqEyDG4Lq_qQSr1cPUv4exb-ESijc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650795</pqid></control><display><type>article</type><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</creator><creatorcontrib>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</creatorcontrib><description>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7090813</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Calculus ; Chebyshev approximation ; chebyshev wavelet ; Chemical reactions ; Dirichlet problem ; Exact solutions ; Food science ; fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP) ; Mathematical analysis ; Polynomials ; reaction-diffusion equation</subject><ispartof>Mathematics (Basel), 2019-09, Vol.7 (9), p.813</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</citedby><cites>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</cites><orcidid>0000-0001-5890-7316 ; 0000-0001-5236-033X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548650795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548650795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Korkiatsakul, Thanon</creatorcontrib><creatorcontrib>Koonprasert, Sanoe</creatorcontrib><creatorcontrib>Neamprem, Khomsan</creatorcontrib><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><title>Mathematics (Basel)</title><description>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</description><subject>Boundary conditions</subject><subject>Calculus</subject><subject>Chebyshev approximation</subject><subject>chebyshev wavelet</subject><subject>Chemical reactions</subject><subject>Dirichlet problem</subject><subject>Exact solutions</subject><subject>Food science</subject><subject>fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP)</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>reaction-diffusion equation</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqCf_QMCjVPPVpjnq4seiqODHNaRJqlm7HU3SlT351826Is7lDW_evBlmiuKA4GPGJD6Z6_QqsMQNYRvFDqVUlCLzm__y7WI_xhnOIQlruNwpvm7dJzoddL9M3ugePUA_Jg9DRB0E9OjnrrwI2qyoXL2Gfg4vEGBR3ruUIb4ty3sf38YBFuj8Y9QrIfr06RU96-BdWiLo0HTwyef2MxgHq8MSTWCw_mfMXrHV6T66_V_cLZ4uzh8nV-XN3eV0cnpTGlbzVHIuOeW0lVYT1rGGGiKEw8YaSRtimtpZLJgxmBhR1xla11JaiVZKayvcsd1iuva1oGfqPfh53kOB9uqHgPCidMgn6J0ytJaS405gQXjLcaupsFhXHRekMXzldbj2eg_wMbqY1AzGkO8TFa14U1dYyCqrjtYqEyDG4Lq_qQSr1cPUv4exb-ESijc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Korkiatsakul, Thanon</creator><creator>Koonprasert, Sanoe</creator><creator>Neamprem, Khomsan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5890-7316</orcidid><orcidid>https://orcid.org/0000-0001-5236-033X</orcidid></search><sort><creationdate>20190901</creationdate><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><author>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Calculus</topic><topic>Chebyshev approximation</topic><topic>chebyshev wavelet</topic><topic>Chemical reactions</topic><topic>Dirichlet problem</topic><topic>Exact solutions</topic><topic>Food science</topic><topic>fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP)</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>reaction-diffusion equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korkiatsakul, Thanon</creatorcontrib><creatorcontrib>Koonprasert, Sanoe</creatorcontrib><creatorcontrib>Neamprem, Khomsan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korkiatsakul, Thanon</au><au>Koonprasert, Sanoe</au><au>Neamprem, Khomsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>813</spage><pages>813-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7090813</doi><orcidid>https://orcid.org/0000-0001-5890-7316</orcidid><orcidid>https://orcid.org/0000-0001-5236-033X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2019-09, Vol.7 (9), p.813 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f |
source | Publicly Available Content Database |
subjects | Boundary conditions Calculus Chebyshev approximation chebyshev wavelet Chemical reactions Dirichlet problem Exact solutions Food science fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP) Mathematical analysis Polynomials reaction-diffusion equation |
title | New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Analytical%20Solutions%20for%20Time-Fractional%20Kolmogorov-Petrovsky-Piskunov%20Equation%20with%20Variety%20of%20Initial%20Boundary%20Conditions&rft.jtitle=Mathematics%20(Basel)&rft.au=Korkiatsakul,%20Thanon&rft.date=2019-09-01&rft.volume=7&rft.issue=9&rft.spage=813&rft.pages=813-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7090813&rft_dat=%3Cproquest_doaj_%3E2548650795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548650795&rft_id=info:pmid/&rfr_iscdi=true |