Loading…

New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions

The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we de...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2019-09, Vol.7 (9), p.813
Main Authors: Korkiatsakul, Thanon, Koonprasert, Sanoe, Neamprem, Khomsan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3
cites cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3
container_end_page
container_issue 9
container_start_page 813
container_title Mathematics (Basel)
container_volume 7
creator Korkiatsakul, Thanon
Koonprasert, Sanoe
Neamprem, Khomsan
description The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.
doi_str_mv 10.3390/math7090813
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f</doaj_id><sourcerecordid>2548650795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqCf_QMCjVPPVpjnq4seiqODHNaRJqlm7HU3SlT351826Is7lDW_evBlmiuKA4GPGJD6Z6_QqsMQNYRvFDqVUlCLzm__y7WI_xhnOIQlruNwpvm7dJzoddL9M3ugePUA_Jg9DRB0E9OjnrrwI2qyoXL2Gfg4vEGBR3ruUIb4ty3sf38YBFuj8Y9QrIfr06RU96-BdWiLo0HTwyef2MxgHq8MSTWCw_mfMXrHV6T66_V_cLZ4uzh8nV-XN3eV0cnpTGlbzVHIuOeW0lVYT1rGGGiKEw8YaSRtimtpZLJgxmBhR1xla11JaiVZKayvcsd1iuva1oGfqPfh53kOB9uqHgPCidMgn6J0ytJaS405gQXjLcaupsFhXHRekMXzldbj2eg_wMbqY1AzGkO8TFa14U1dYyCqrjtYqEyDG4Lq_qQSr1cPUv4exb-ESijc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650795</pqid></control><display><type>article</type><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</creator><creatorcontrib>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</creatorcontrib><description>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7090813</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Calculus ; Chebyshev approximation ; chebyshev wavelet ; Chemical reactions ; Dirichlet problem ; Exact solutions ; Food science ; fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP) ; Mathematical analysis ; Polynomials ; reaction-diffusion equation</subject><ispartof>Mathematics (Basel), 2019-09, Vol.7 (9), p.813</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</citedby><cites>FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</cites><orcidid>0000-0001-5890-7316 ; 0000-0001-5236-033X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548650795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548650795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Korkiatsakul, Thanon</creatorcontrib><creatorcontrib>Koonprasert, Sanoe</creatorcontrib><creatorcontrib>Neamprem, Khomsan</creatorcontrib><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><title>Mathematics (Basel)</title><description>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</description><subject>Boundary conditions</subject><subject>Calculus</subject><subject>Chebyshev approximation</subject><subject>chebyshev wavelet</subject><subject>Chemical reactions</subject><subject>Dirichlet problem</subject><subject>Exact solutions</subject><subject>Food science</subject><subject>fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP)</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>reaction-diffusion equation</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqCf_QMCjVPPVpjnq4seiqODHNaRJqlm7HU3SlT351826Is7lDW_evBlmiuKA4GPGJD6Z6_QqsMQNYRvFDqVUlCLzm__y7WI_xhnOIQlruNwpvm7dJzoddL9M3ugePUA_Jg9DRB0E9OjnrrwI2qyoXL2Gfg4vEGBR3ruUIb4ty3sf38YBFuj8Y9QrIfr06RU96-BdWiLo0HTwyef2MxgHq8MSTWCw_mfMXrHV6T66_V_cLZ4uzh8nV-XN3eV0cnpTGlbzVHIuOeW0lVYT1rGGGiKEw8YaSRtimtpZLJgxmBhR1xla11JaiVZKayvcsd1iuva1oGfqPfh53kOB9uqHgPCidMgn6J0ytJaS405gQXjLcaupsFhXHRekMXzldbj2eg_wMbqY1AzGkO8TFa14U1dYyCqrjtYqEyDG4Lq_qQSr1cPUv4exb-ESijc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Korkiatsakul, Thanon</creator><creator>Koonprasert, Sanoe</creator><creator>Neamprem, Khomsan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5890-7316</orcidid><orcidid>https://orcid.org/0000-0001-5236-033X</orcidid></search><sort><creationdate>20190901</creationdate><title>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</title><author>Korkiatsakul, Thanon ; Koonprasert, Sanoe ; Neamprem, Khomsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Calculus</topic><topic>Chebyshev approximation</topic><topic>chebyshev wavelet</topic><topic>Chemical reactions</topic><topic>Dirichlet problem</topic><topic>Exact solutions</topic><topic>Food science</topic><topic>fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP)</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>reaction-diffusion equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korkiatsakul, Thanon</creatorcontrib><creatorcontrib>Koonprasert, Sanoe</creatorcontrib><creatorcontrib>Neamprem, Khomsan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korkiatsakul, Thanon</au><au>Koonprasert, Sanoe</au><au>Neamprem, Khomsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>813</spage><pages>813-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The generalized time fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP), D t α ω ( x , t ) = a ( x , t ) D x x ω ( x , t ) + F ( ω ( x , t ) ) , which plays an important role in engineering, chemical reaction problem is proposed by Caputo fractional order derivative sense. In this paper, we develop a framework wavelet, including shift Chebyshev polynomial of the first kind as a mother wavelet, and also construct some operational matrices that represent Caputo fractional derivative to obtain analytical solutions for FKPP equation with three different types of Initial Boundary conditions (Dirichlet, Dirichlet-Neumann, and Neumann-Robin). Our results shown that the Chebyshev wavelet is a powerful method, due to its simplicity, efficiency in analytical approximations, and its fast convergence. The comparison of the Chebyshev wavelet results indicates that the proposed method not only gives satisfactory results but also do not need large amount of CPU times.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7090813</doi><orcidid>https://orcid.org/0000-0001-5890-7316</orcidid><orcidid>https://orcid.org/0000-0001-5236-033X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2019-09, Vol.7 (9), p.813
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c269940f70714b40ba27d0a5f4718c4f
source Publicly Available Content Database
subjects Boundary conditions
Calculus
Chebyshev approximation
chebyshev wavelet
Chemical reactions
Dirichlet problem
Exact solutions
Food science
fractional Kolmogorov-Petrovsky-Piskunov equation (FKPP)
Mathematical analysis
Polynomials
reaction-diffusion equation
title New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Analytical%20Solutions%20for%20Time-Fractional%20Kolmogorov-Petrovsky-Piskunov%20Equation%20with%20Variety%20of%20Initial%20Boundary%20Conditions&rft.jtitle=Mathematics%20(Basel)&rft.au=Korkiatsakul,%20Thanon&rft.date=2019-09-01&rft.volume=7&rft.issue=9&rft.spage=813&rft.pages=813-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7090813&rft_dat=%3Cproquest_doaj_%3E2548650795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4494242b9da13f382c177e0cdc9281c86ed073cc01c766c01beb2257b99dd50f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548650795&rft_id=info:pmid/&rfr_iscdi=true