Loading…

A greedy alignment-free distance estimator for phylogenetic inference

Alignment-free sequence comparison approaches have been garnering increasing interest in various data- and compute-intensive applications such as phylogenetic inference for large-scale sequences. While k-mer based methods are predominantly used in real applications, the average common substring (ACS...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2017-06, Vol.18 (Suppl 8), p.238-238, Article 238
Main Authors: Thankachan, Sharma V, Chockalingam, Sriram P, Liu, Yongchao, Krishnan, Ambujam, Aluru, Srinivas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alignment-free sequence comparison approaches have been garnering increasing interest in various data- and compute-intensive applications such as phylogenetic inference for large-scale sequences. While k-mer based methods are predominantly used in real applications, the average common substring (ACS) approach is emerging as one of the prominent alignment-free approaches. This ACS approach has been further generalized by some recent work, either greedily or exactly, by allowing a bounded number of mismatches in the common substrings. We present ALFRED-G, a greedy alignment-free distance estimator for phylogenetic tree reconstruction based on the concept of the generalized ACS approach. In this algorithm, we have investigated a new heuristic to efficiently compute the lengths of common strings with mismatches allowed, and have further applied this heuristic to phylogeny reconstruction. Performance evaluation using real sequence datasets shows that our heuristic is able to reconstruct comparable, or even more accurate, phylogenetic tree topologies than the kmacs heuristic algorithm at highly competitive speed. ALFRED-G is an alignment-free heuristic for evolutionary distance estimation between two biological sequences. This algorithm is implemented in C++ and has been incorporated into our open-source ALFRED software package ( http://alurulab.cc.gatech.edu/phylo ).
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-017-1658-0