Loading…
Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis
Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpr...
Saved in:
Published in: | Plants (Basel) 2024-01, Vol.13 (2), p.187 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733 |
container_end_page | |
container_issue | 2 |
container_start_page | 187 |
container_title | Plants (Basel) |
container_volume | 13 |
creator | Kim, Yeon-Ok Safdar, Mahpara Kang, Hunseung Kim, Jangho |
description | Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of
in plants under heavy metal stress remain unclear. In the present study, in
, the transcript level of
was markedly increased by Ni but was decreased by Pb.
-overexpressing plants improved Ni tolerance, whereas the knockout mutant (
) was more susceptible than the wild type to Ni. In addition,
showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in
, whereas Pb accumulation in
was lower than that in overexpression lines. Ni induced glutathione synthase genes
and
in overexpression lines, whereas Pb increased metallothionein genes
and
and phytochelatin synthase genes
and
in
. Furthermore, Ni increased
and
in
, whereas Pb significantly induced
and
in overexpression lines. The mRNA stability of
and
was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that
plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes. |
doi_str_mv | 10.3390/plants13020187 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780924578</galeid><doaj_id>oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b</doaj_id><sourcerecordid>A780924578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXplSOKxAUOKbbjxM4JLRXdrrQq1VKOyPLHJPWStRc7QfTf16GlNKhxJEcz7zwZv54se43RSVk26MO-l26IuEQEYc6eZYeEkLJgjLLnj74PsuMYtyg9PL24fpkdlJxUNaP0MPu-7G-0dVBsrL7ONxeL4pN1xrouvwx-AOvyxbDcXLL8bHR6sN7FPMUurP4BfS6dydcgTX7lewjSaZiSiyCVNX4fbXyVvWhlH-H4fj_Kvp19vjo9L9ZflqvTxbrQFcVDoZrGUMVqaCmmWFWNYZwTMLqhjCtSc2IIZ0prrCvEm4oaTmlDCK0kS4myPMpWd1zj5Vbsg93JcCO8tOJPwIdOyDBY3YPQRJaKSlAaMJUtVbrWSKPUQkkxcJVYH-9Y-1HtUg_ghiD7GXSecfZadP6XwMlczhFOhHf3hOB_jhAHsbNRQ59uC_wYBWkw4zUj1dT42_-kWz8Gl7yaVJw1JJ3un6qT6QTWtT79WE9QsWAcNckIxpPq5AlVWgZ2VnsHrU3xWcH7WUHSDPB76OQYo1h93TwJ18HHGKB9MAQjMQ2jmA9jKnjz2MYH-d_RK28B4xLXRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918792733</pqid></control><display><type>article</type><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</creator><creatorcontrib>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</creatorcontrib><description>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of
in plants under heavy metal stress remain unclear. In the present study, in
, the transcript level of
was markedly increased by Ni but was decreased by Pb.
-overexpressing plants improved Ni tolerance, whereas the knockout mutant (
) was more susceptible than the wild type to Ni. In addition,
showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in
, whereas Pb accumulation in
was lower than that in overexpression lines. Ni induced glutathione synthase genes
and
in overexpression lines, whereas Pb increased metallothionein genes
and
and phytochelatin synthase genes
and
in
. Furthermore, Ni increased
and
in
, whereas Pb significantly induced
and
in overexpression lines. The mRNA stability of
and
was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that
plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13020187</identifier><identifier>PMID: 38256744</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accumulation ; antioxidant enzyme ; Antioxidants ; Arabidopsis ; Arabidopsis thaliana ; AtGRP7 ; Chelating agents ; Comparative analysis ; Environmental aspects ; Environmental conditions ; Environmental stress ; Enzymes ; Gene regulation ; Genes ; Genetic aspects ; Glutathione ; Glutathione synthase ; Glycine ; heavy metal tolerance ; Heavy metals ; Identification and classification ; Lead ; Metabolism ; Metallothionein ; mRNA stability ; Nickel ; Oxidative stress ; Physiological aspects ; Phytochelatin synthase ; Plant growth ; Post-transcription ; Proteins ; Ribonucleic acid ; RNA ; RNA-binding protein ; Salinity ; Toxicity</subject><ispartof>Plants (Basel), 2024-01, Vol.13 (2), p.187</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</cites><orcidid>0000-0002-3532-7690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918792733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918792733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38256744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeon-Ok</creatorcontrib><creatorcontrib>Safdar, Mahpara</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><creatorcontrib>Kim, Jangho</creatorcontrib><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of
in plants under heavy metal stress remain unclear. In the present study, in
, the transcript level of
was markedly increased by Ni but was decreased by Pb.
-overexpressing plants improved Ni tolerance, whereas the knockout mutant (
) was more susceptible than the wild type to Ni. In addition,
showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in
, whereas Pb accumulation in
was lower than that in overexpression lines. Ni induced glutathione synthase genes
and
in overexpression lines, whereas Pb increased metallothionein genes
and
and phytochelatin synthase genes
and
in
. Furthermore, Ni increased
and
in
, whereas Pb significantly induced
and
in overexpression lines. The mRNA stability of
and
was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that
plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</description><subject>Accumulation</subject><subject>antioxidant enzyme</subject><subject>Antioxidants</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>AtGRP7</subject><subject>Chelating agents</subject><subject>Comparative analysis</subject><subject>Environmental aspects</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Enzymes</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glutathione</subject><subject>Glutathione synthase</subject><subject>Glycine</subject><subject>heavy metal tolerance</subject><subject>Heavy metals</subject><subject>Identification and classification</subject><subject>Lead</subject><subject>Metabolism</subject><subject>Metallothionein</subject><subject>mRNA stability</subject><subject>Nickel</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Phytochelatin synthase</subject><subject>Plant growth</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Salinity</subject><subject>Toxicity</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXplSOKxAUOKbbjxM4JLRXdrrQq1VKOyPLHJPWStRc7QfTf16GlNKhxJEcz7zwZv54se43RSVk26MO-l26IuEQEYc6eZYeEkLJgjLLnj74PsuMYtyg9PL24fpkdlJxUNaP0MPu-7G-0dVBsrL7ONxeL4pN1xrouvwx-AOvyxbDcXLL8bHR6sN7FPMUurP4BfS6dydcgTX7lewjSaZiSiyCVNX4fbXyVvWhlH-H4fj_Kvp19vjo9L9ZflqvTxbrQFcVDoZrGUMVqaCmmWFWNYZwTMLqhjCtSc2IIZ0prrCvEm4oaTmlDCK0kS4myPMpWd1zj5Vbsg93JcCO8tOJPwIdOyDBY3YPQRJaKSlAaMJUtVbrWSKPUQkkxcJVYH-9Y-1HtUg_ghiD7GXSecfZadP6XwMlczhFOhHf3hOB_jhAHsbNRQ59uC_wYBWkw4zUj1dT42_-kWz8Gl7yaVJw1JJ3un6qT6QTWtT79WE9QsWAcNckIxpPq5AlVWgZ2VnsHrU3xWcH7WUHSDPB76OQYo1h93TwJ18HHGKB9MAQjMQ2jmA9jKnjz2MYH-d_RK28B4xLXRQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kim, Yeon-Ok</creator><creator>Safdar, Mahpara</creator><creator>Kang, Hunseung</creator><creator>Kim, Jangho</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3532-7690</orcidid></search><sort><creationdate>20240101</creationdate><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><author>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>antioxidant enzyme</topic><topic>Antioxidants</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>AtGRP7</topic><topic>Chelating agents</topic><topic>Comparative analysis</topic><topic>Environmental aspects</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Enzymes</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glutathione</topic><topic>Glutathione synthase</topic><topic>Glycine</topic><topic>heavy metal tolerance</topic><topic>Heavy metals</topic><topic>Identification and classification</topic><topic>Lead</topic><topic>Metabolism</topic><topic>Metallothionein</topic><topic>mRNA stability</topic><topic>Nickel</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Phytochelatin synthase</topic><topic>Plant growth</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Salinity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeon-Ok</creatorcontrib><creatorcontrib>Safdar, Mahpara</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><creatorcontrib>Kim, Jangho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yeon-Ok</au><au>Safdar, Mahpara</au><au>Kang, Hunseung</au><au>Kim, Jangho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>187</spage><pages>187-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of
in plants under heavy metal stress remain unclear. In the present study, in
, the transcript level of
was markedly increased by Ni but was decreased by Pb.
-overexpressing plants improved Ni tolerance, whereas the knockout mutant (
) was more susceptible than the wild type to Ni. In addition,
showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in
, whereas Pb accumulation in
was lower than that in overexpression lines. Ni induced glutathione synthase genes
and
in overexpression lines, whereas Pb increased metallothionein genes
and
and phytochelatin synthase genes
and
in
. Furthermore, Ni increased
and
in
, whereas Pb significantly induced
and
in overexpression lines. The mRNA stability of
and
was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that
plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38256744</pmid><doi>10.3390/plants13020187</doi><orcidid>https://orcid.org/0000-0002-3532-7690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-7747 |
ispartof | Plants (Basel), 2024-01, Vol.13 (2), p.187 |
issn | 2223-7747 2223-7747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Accumulation antioxidant enzyme Antioxidants Arabidopsis Arabidopsis thaliana AtGRP7 Chelating agents Comparative analysis Environmental aspects Environmental conditions Environmental stress Enzymes Gene regulation Genes Genetic aspects Glutathione Glutathione synthase Glycine heavy metal tolerance Heavy metals Identification and classification Lead Metabolism Metallothionein mRNA stability Nickel Oxidative stress Physiological aspects Phytochelatin synthase Plant growth Post-transcription Proteins Ribonucleic acid RNA RNA-binding protein Salinity Toxicity |
title | Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycine-Rich%20RNA-Binding%20Protein%20AtGRP7%20Functions%20in%20Nickel%20and%20Lead%20Tolerance%20in%20Arabidopsis&rft.jtitle=Plants%20(Basel)&rft.au=Kim,%20Yeon-Ok&rft.date=2024-01-01&rft.volume=13&rft.issue=2&rft.spage=187&rft.pages=187-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13020187&rft_dat=%3Cgale_doaj_%3EA780924578%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918792733&rft_id=info:pmid/38256744&rft_galeid=A780924578&rfr_iscdi=true |