Loading…

Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis

Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpr...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2024-01, Vol.13 (2), p.187
Main Authors: Kim, Yeon-Ok, Safdar, Mahpara, Kang, Hunseung, Kim, Jangho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733
container_end_page
container_issue 2
container_start_page 187
container_title Plants (Basel)
container_volume 13
creator Kim, Yeon-Ok
Safdar, Mahpara
Kang, Hunseung
Kim, Jangho
description Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpressing plants improved Ni tolerance, whereas the knockout mutant ( ) was more susceptible than the wild type to Ni. In addition, showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in , whereas Pb accumulation in was lower than that in overexpression lines. Ni induced glutathione synthase genes and in overexpression lines, whereas Pb increased metallothionein genes and and phytochelatin synthase genes and in . Furthermore, Ni increased and in , whereas Pb significantly induced and in overexpression lines. The mRNA stability of and was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.
doi_str_mv 10.3390/plants13020187
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780924578</galeid><doaj_id>oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b</doaj_id><sourcerecordid>A780924578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXplSOKxAUOKbbjxM4JLRXdrrQq1VKOyPLHJPWStRc7QfTf16GlNKhxJEcz7zwZv54se43RSVk26MO-l26IuEQEYc6eZYeEkLJgjLLnj74PsuMYtyg9PL24fpkdlJxUNaP0MPu-7G-0dVBsrL7ONxeL4pN1xrouvwx-AOvyxbDcXLL8bHR6sN7FPMUurP4BfS6dydcgTX7lewjSaZiSiyCVNX4fbXyVvWhlH-H4fj_Kvp19vjo9L9ZflqvTxbrQFcVDoZrGUMVqaCmmWFWNYZwTMLqhjCtSc2IIZ0prrCvEm4oaTmlDCK0kS4myPMpWd1zj5Vbsg93JcCO8tOJPwIdOyDBY3YPQRJaKSlAaMJUtVbrWSKPUQkkxcJVYH-9Y-1HtUg_ghiD7GXSecfZadP6XwMlczhFOhHf3hOB_jhAHsbNRQ59uC_wYBWkw4zUj1dT42_-kWz8Gl7yaVJw1JJ3un6qT6QTWtT79WE9QsWAcNckIxpPq5AlVWgZ2VnsHrU3xWcH7WUHSDPB76OQYo1h93TwJ18HHGKB9MAQjMQ2jmA9jKnjz2MYH-d_RK28B4xLXRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918792733</pqid></control><display><type>article</type><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</creator><creatorcontrib>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</creatorcontrib><description>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpressing plants improved Ni tolerance, whereas the knockout mutant ( ) was more susceptible than the wild type to Ni. In addition, showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in , whereas Pb accumulation in was lower than that in overexpression lines. Ni induced glutathione synthase genes and in overexpression lines, whereas Pb increased metallothionein genes and and phytochelatin synthase genes and in . Furthermore, Ni increased and in , whereas Pb significantly induced and in overexpression lines. The mRNA stability of and was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13020187</identifier><identifier>PMID: 38256744</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accumulation ; antioxidant enzyme ; Antioxidants ; Arabidopsis ; Arabidopsis thaliana ; AtGRP7 ; Chelating agents ; Comparative analysis ; Environmental aspects ; Environmental conditions ; Environmental stress ; Enzymes ; Gene regulation ; Genes ; Genetic aspects ; Glutathione ; Glutathione synthase ; Glycine ; heavy metal tolerance ; Heavy metals ; Identification and classification ; Lead ; Metabolism ; Metallothionein ; mRNA stability ; Nickel ; Oxidative stress ; Physiological aspects ; Phytochelatin synthase ; Plant growth ; Post-transcription ; Proteins ; Ribonucleic acid ; RNA ; RNA-binding protein ; Salinity ; Toxicity</subject><ispartof>Plants (Basel), 2024-01, Vol.13 (2), p.187</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</cites><orcidid>0000-0002-3532-7690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918792733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918792733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38256744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeon-Ok</creatorcontrib><creatorcontrib>Safdar, Mahpara</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><creatorcontrib>Kim, Jangho</creatorcontrib><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpressing plants improved Ni tolerance, whereas the knockout mutant ( ) was more susceptible than the wild type to Ni. In addition, showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in , whereas Pb accumulation in was lower than that in overexpression lines. Ni induced glutathione synthase genes and in overexpression lines, whereas Pb increased metallothionein genes and and phytochelatin synthase genes and in . Furthermore, Ni increased and in , whereas Pb significantly induced and in overexpression lines. The mRNA stability of and was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</description><subject>Accumulation</subject><subject>antioxidant enzyme</subject><subject>Antioxidants</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>AtGRP7</subject><subject>Chelating agents</subject><subject>Comparative analysis</subject><subject>Environmental aspects</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Enzymes</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glutathione</subject><subject>Glutathione synthase</subject><subject>Glycine</subject><subject>heavy metal tolerance</subject><subject>Heavy metals</subject><subject>Identification and classification</subject><subject>Lead</subject><subject>Metabolism</subject><subject>Metallothionein</subject><subject>mRNA stability</subject><subject>Nickel</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Phytochelatin synthase</subject><subject>Plant growth</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Salinity</subject><subject>Toxicity</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXplSOKxAUOKbbjxM4JLRXdrrQq1VKOyPLHJPWStRc7QfTf16GlNKhxJEcz7zwZv54se43RSVk26MO-l26IuEQEYc6eZYeEkLJgjLLnj74PsuMYtyg9PL24fpkdlJxUNaP0MPu-7G-0dVBsrL7ONxeL4pN1xrouvwx-AOvyxbDcXLL8bHR6sN7FPMUurP4BfS6dydcgTX7lewjSaZiSiyCVNX4fbXyVvWhlH-H4fj_Kvp19vjo9L9ZflqvTxbrQFcVDoZrGUMVqaCmmWFWNYZwTMLqhjCtSc2IIZ0prrCvEm4oaTmlDCK0kS4myPMpWd1zj5Vbsg93JcCO8tOJPwIdOyDBY3YPQRJaKSlAaMJUtVbrWSKPUQkkxcJVYH-9Y-1HtUg_ghiD7GXSecfZadP6XwMlczhFOhHf3hOB_jhAHsbNRQ59uC_wYBWkw4zUj1dT42_-kWz8Gl7yaVJw1JJ3un6qT6QTWtT79WE9QsWAcNckIxpPq5AlVWgZ2VnsHrU3xWcH7WUHSDPB76OQYo1h93TwJ18HHGKB9MAQjMQ2jmA9jKnjz2MYH-d_RK28B4xLXRQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kim, Yeon-Ok</creator><creator>Safdar, Mahpara</creator><creator>Kang, Hunseung</creator><creator>Kim, Jangho</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3532-7690</orcidid></search><sort><creationdate>20240101</creationdate><title>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</title><author>Kim, Yeon-Ok ; Safdar, Mahpara ; Kang, Hunseung ; Kim, Jangho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>antioxidant enzyme</topic><topic>Antioxidants</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>AtGRP7</topic><topic>Chelating agents</topic><topic>Comparative analysis</topic><topic>Environmental aspects</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Enzymes</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glutathione</topic><topic>Glutathione synthase</topic><topic>Glycine</topic><topic>heavy metal tolerance</topic><topic>Heavy metals</topic><topic>Identification and classification</topic><topic>Lead</topic><topic>Metabolism</topic><topic>Metallothionein</topic><topic>mRNA stability</topic><topic>Nickel</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Phytochelatin synthase</topic><topic>Plant growth</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Salinity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeon-Ok</creatorcontrib><creatorcontrib>Safdar, Mahpara</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><creatorcontrib>Kim, Jangho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yeon-Ok</au><au>Safdar, Mahpara</au><au>Kang, Hunseung</au><au>Kim, Jangho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>187</spage><pages>187-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb. -overexpressing plants improved Ni tolerance, whereas the knockout mutant ( ) was more susceptible than the wild type to Ni. In addition, showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in , whereas Pb accumulation in was lower than that in overexpression lines. Ni induced glutathione synthase genes and in overexpression lines, whereas Pb increased metallothionein genes and and phytochelatin synthase genes and in . Furthermore, Ni increased and in , whereas Pb significantly induced and in overexpression lines. The mRNA stability of and was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38256744</pmid><doi>10.3390/plants13020187</doi><orcidid>https://orcid.org/0000-0002-3532-7690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7747
ispartof Plants (Basel), 2024-01, Vol.13 (2), p.187
issn 2223-7747
2223-7747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2a3b4aebce14af4bc6c0c0b99341e8b
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accumulation
antioxidant enzyme
Antioxidants
Arabidopsis
Arabidopsis thaliana
AtGRP7
Chelating agents
Comparative analysis
Environmental aspects
Environmental conditions
Environmental stress
Enzymes
Gene regulation
Genes
Genetic aspects
Glutathione
Glutathione synthase
Glycine
heavy metal tolerance
Heavy metals
Identification and classification
Lead
Metabolism
Metallothionein
mRNA stability
Nickel
Oxidative stress
Physiological aspects
Phytochelatin synthase
Plant growth
Post-transcription
Proteins
Ribonucleic acid
RNA
RNA-binding protein
Salinity
Toxicity
title Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycine-Rich%20RNA-Binding%20Protein%20AtGRP7%20Functions%20in%20Nickel%20and%20Lead%20Tolerance%20in%20Arabidopsis&rft.jtitle=Plants%20(Basel)&rft.au=Kim,%20Yeon-Ok&rft.date=2024-01-01&rft.volume=13&rft.issue=2&rft.spage=187&rft.pages=187-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13020187&rft_dat=%3Cgale_doaj_%3EA780924578%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-b99d4b76ef4141b59d7882edc9478b2682d287bcc1c508954d84492245a728733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918792733&rft_id=info:pmid/38256744&rft_galeid=A780924578&rfr_iscdi=true