Loading…
Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population
Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pat...
Saved in:
Published in: | BMC genomics 2020-01, Vol.21 (1), p.84-84, Article 84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323 |
container_end_page | 84 |
container_issue | 1 |
container_start_page | 84 |
container_title | BMC genomics |
container_volume | 21 |
creator | Ng'oma, E Williams-Simon, P A Rahman, A King, E G |
description | Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear.
To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P
< 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P
< 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR |
doi_str_mv | 10.1186/s12864-020-6467-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362</doaj_id><sourcerecordid>2348236287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</originalsourceid><addsrcrecordid>eNpdUstu1TAUjBCIlsIHsEGW2LAJ-JXE3iChlkelSmxgbZ3rnOT6KrGD7VTqV_DLONxL1bKwbI1n5jw0VfWa0feMqfZDYly1sqac1q1su7p9Up0z2bGas1Y-ffA-q16kdKCUdYo3z6szwbTmTInz6veVu8WYkOxcmMLoLExkicFiSpiIDSH2zkNGkvflRPDJRrdkF3whRkxL8EWcA_Frju6E2z34scidJ0CuYkhh2bsJyIwT-DBCyhjJvE7ZLRDRZ7KEZZ1gU7-sng0wJXx1ui-qn18-_7j8Vt98_3p9-emmtlKLXHNJUXVa4NDrQTa2073UOwlKomwUNIOkqmN2QNWgthyFxkaxoQB9D0pwcVFdH337AAezRDdDvDMBnPkLhDgaiNnZCY3lMOwklaqnQiptgXXQadYLsAxFu3l9PHot627G3paJIkyPTB__eLc3Y7g1rVaKy6YYvDsZxPBrxZTN7JLFqWwLw5oML3V5qaS6Qn37H_UQ1liWvrGaTjJNm43Fjixblp8iDvfNMGq26JhjdEyJjtmiY9qiefNwinvFv6yIP_KlxIE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357419057</pqid></control><display><type>article</type><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</creator><creatorcontrib>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</creatorcontrib><description>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear.
To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P
< 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P
< 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P
< 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed.
Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-6467-6</identifier><identifier>PMID: 31992183</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Aging ; Biological activity ; Cluster analysis ; Clustering ; Diet ; Diet effects ; Dietary restrictions ; Differential gene expression ; Drosophila melanogaster ; Gene co-expression ; Gene expression ; Gene set enrichment ; Gene set enrichment analysis ; Genes ; Genetic diversity ; Genomics ; Hormones ; Insects ; Insulin ; Kinases ; Metabolism ; Modules ; Multiparent population ; Natural populations ; Nucleotide sequence ; Nutrients ; Nutrition ; Population ; Populations ; Principal components analysis ; Resource allocation ; Resource availability ; Ribonucleic acid ; RNA ; Signal transduction ; Transcription ; Transcription factors</subject><ispartof>BMC genomics, 2020-01, Vol.21 (1), p.84-84, Article 84</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</citedby><cites>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</cites><orcidid>0000-0003-1947-476X ; 0000-0002-6741-7922 ; 0000-0002-9393-4720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2357419057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng'oma, E</creatorcontrib><creatorcontrib>Williams-Simon, P A</creatorcontrib><creatorcontrib>Rahman, A</creatorcontrib><creatorcontrib>King, E G</creatorcontrib><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear.
To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P
< 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P
< 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P
< 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed.
Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</description><subject>Aging</subject><subject>Biological activity</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Diet</subject><subject>Diet effects</subject><subject>Dietary restrictions</subject><subject>Differential gene expression</subject><subject>Drosophila melanogaster</subject><subject>Gene co-expression</subject><subject>Gene expression</subject><subject>Gene set enrichment</subject><subject>Gene set enrichment analysis</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomics</subject><subject>Hormones</subject><subject>Insects</subject><subject>Insulin</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Modules</subject><subject>Multiparent population</subject><subject>Natural populations</subject><subject>Nucleotide sequence</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Population</subject><subject>Populations</subject><subject>Principal components analysis</subject><subject>Resource allocation</subject><subject>Resource availability</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Transcription</subject><subject>Transcription factors</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUstu1TAUjBCIlsIHsEGW2LAJ-JXE3iChlkelSmxgbZ3rnOT6KrGD7VTqV_DLONxL1bKwbI1n5jw0VfWa0feMqfZDYly1sqac1q1su7p9Up0z2bGas1Y-ffA-q16kdKCUdYo3z6szwbTmTInz6veVu8WYkOxcmMLoLExkicFiSpiIDSH2zkNGkvflRPDJRrdkF3whRkxL8EWcA_Frju6E2z34scidJ0CuYkhh2bsJyIwT-DBCyhjJvE7ZLRDRZ7KEZZ1gU7-sng0wJXx1ui-qn18-_7j8Vt98_3p9-emmtlKLXHNJUXVa4NDrQTa2073UOwlKomwUNIOkqmN2QNWgthyFxkaxoQB9D0pwcVFdH337AAezRDdDvDMBnPkLhDgaiNnZCY3lMOwklaqnQiptgXXQadYLsAxFu3l9PHot627G3paJIkyPTB__eLc3Y7g1rVaKy6YYvDsZxPBrxZTN7JLFqWwLw5oML3V5qaS6Qn37H_UQ1liWvrGaTjJNm43Fjixblp8iDvfNMGq26JhjdEyJjtmiY9qiefNwinvFv6yIP_KlxIE</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Ng'oma, E</creator><creator>Williams-Simon, P A</creator><creator>Rahman, A</creator><creator>King, E G</creator><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1947-476X</orcidid><orcidid>https://orcid.org/0000-0002-6741-7922</orcidid><orcidid>https://orcid.org/0000-0002-9393-4720</orcidid></search><sort><creationdate>20200128</creationdate><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><author>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Biological activity</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Diet</topic><topic>Diet effects</topic><topic>Dietary restrictions</topic><topic>Differential gene expression</topic><topic>Drosophila melanogaster</topic><topic>Gene co-expression</topic><topic>Gene expression</topic><topic>Gene set enrichment</topic><topic>Gene set enrichment analysis</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomics</topic><topic>Hormones</topic><topic>Insects</topic><topic>Insulin</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Modules</topic><topic>Multiparent population</topic><topic>Natural populations</topic><topic>Nucleotide sequence</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Population</topic><topic>Populations</topic><topic>Principal components analysis</topic><topic>Resource allocation</topic><topic>Resource availability</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Transcription</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng'oma, E</creatorcontrib><creatorcontrib>Williams-Simon, P A</creatorcontrib><creatorcontrib>Rahman, A</creatorcontrib><creatorcontrib>King, E G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng'oma, E</au><au>Williams-Simon, P A</au><au>Rahman, A</au><au>King, E G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>84</spage><epage>84</epage><pages>84-84</pages><artnum>84</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear.
To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P
< 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P
< 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P
< 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed.
Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>31992183</pmid><doi>10.1186/s12864-020-6467-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1947-476X</orcidid><orcidid>https://orcid.org/0000-0002-6741-7922</orcidid><orcidid>https://orcid.org/0000-0002-9393-4720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2020-01, Vol.21 (1), p.84-84, Article 84 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Aging Biological activity Cluster analysis Clustering Diet Diet effects Dietary restrictions Differential gene expression Drosophila melanogaster Gene co-expression Gene expression Gene set enrichment Gene set enrichment analysis Genes Genetic diversity Genomics Hormones Insects Insulin Kinases Metabolism Modules Multiparent population Natural populations Nucleotide sequence Nutrients Nutrition Population Populations Principal components analysis Resource allocation Resource availability Ribonucleic acid RNA Signal transduction Transcription Transcription factors |
title | Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20biological%20processes%20coordinate%20the%20transcriptional%20response%20to%20nutritional%20changes%20in%20a%20Drosophila%20melanogaster%20multiparent%20population&rft.jtitle=BMC%20genomics&rft.au=Ng'oma,%20E&rft.date=2020-01-28&rft.volume=21&rft.issue=1&rft.spage=84&rft.epage=84&rft.pages=84-84&rft.artnum=84&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-6467-6&rft_dat=%3Cproquest_doaj_%3E2348236287%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357419057&rft_id=info:pmid/31992183&rfr_iscdi=true |