Loading…

Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population

Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pat...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2020-01, Vol.21 (1), p.84-84, Article 84
Main Authors: Ng'oma, E, Williams-Simon, P A, Rahman, A, King, E G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323
cites cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323
container_end_page 84
container_issue 1
container_start_page 84
container_title BMC genomics
container_volume 21
creator Ng'oma, E
Williams-Simon, P A
Rahman, A
King, E G
description Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P < 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P < 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR 
doi_str_mv 10.1186/s12864-020-6467-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362</doaj_id><sourcerecordid>2348236287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</originalsourceid><addsrcrecordid>eNpdUstu1TAUjBCIlsIHsEGW2LAJ-JXE3iChlkelSmxgbZ3rnOT6KrGD7VTqV_DLONxL1bKwbI1n5jw0VfWa0feMqfZDYly1sqac1q1su7p9Up0z2bGas1Y-ffA-q16kdKCUdYo3z6szwbTmTInz6veVu8WYkOxcmMLoLExkicFiSpiIDSH2zkNGkvflRPDJRrdkF3whRkxL8EWcA_Frju6E2z34scidJ0CuYkhh2bsJyIwT-DBCyhjJvE7ZLRDRZ7KEZZ1gU7-sng0wJXx1ui-qn18-_7j8Vt98_3p9-emmtlKLXHNJUXVa4NDrQTa2073UOwlKomwUNIOkqmN2QNWgthyFxkaxoQB9D0pwcVFdH337AAezRDdDvDMBnPkLhDgaiNnZCY3lMOwklaqnQiptgXXQadYLsAxFu3l9PHot627G3paJIkyPTB__eLc3Y7g1rVaKy6YYvDsZxPBrxZTN7JLFqWwLw5oML3V5qaS6Qn37H_UQ1liWvrGaTjJNm43Fjixblp8iDvfNMGq26JhjdEyJjtmiY9qiefNwinvFv6yIP_KlxIE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357419057</pqid></control><display><type>article</type><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</creator><creatorcontrib>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</creatorcontrib><description>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P &lt; 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P &lt; 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR &lt; 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P &lt; 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed. Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-6467-6</identifier><identifier>PMID: 31992183</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Aging ; Biological activity ; Cluster analysis ; Clustering ; Diet ; Diet effects ; Dietary restrictions ; Differential gene expression ; Drosophila melanogaster ; Gene co-expression ; Gene expression ; Gene set enrichment ; Gene set enrichment analysis ; Genes ; Genetic diversity ; Genomics ; Hormones ; Insects ; Insulin ; Kinases ; Metabolism ; Modules ; Multiparent population ; Natural populations ; Nucleotide sequence ; Nutrients ; Nutrition ; Population ; Populations ; Principal components analysis ; Resource allocation ; Resource availability ; Ribonucleic acid ; RNA ; Signal transduction ; Transcription ; Transcription factors</subject><ispartof>BMC genomics, 2020-01, Vol.21 (1), p.84-84, Article 84</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</citedby><cites>FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</cites><orcidid>0000-0003-1947-476X ; 0000-0002-6741-7922 ; 0000-0002-9393-4720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2357419057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng'oma, E</creatorcontrib><creatorcontrib>Williams-Simon, P A</creatorcontrib><creatorcontrib>Rahman, A</creatorcontrib><creatorcontrib>King, E G</creatorcontrib><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P &lt; 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P &lt; 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR &lt; 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P &lt; 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed. Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</description><subject>Aging</subject><subject>Biological activity</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Diet</subject><subject>Diet effects</subject><subject>Dietary restrictions</subject><subject>Differential gene expression</subject><subject>Drosophila melanogaster</subject><subject>Gene co-expression</subject><subject>Gene expression</subject><subject>Gene set enrichment</subject><subject>Gene set enrichment analysis</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomics</subject><subject>Hormones</subject><subject>Insects</subject><subject>Insulin</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Modules</subject><subject>Multiparent population</subject><subject>Natural populations</subject><subject>Nucleotide sequence</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Population</subject><subject>Populations</subject><subject>Principal components analysis</subject><subject>Resource allocation</subject><subject>Resource availability</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Transcription</subject><subject>Transcription factors</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUstu1TAUjBCIlsIHsEGW2LAJ-JXE3iChlkelSmxgbZ3rnOT6KrGD7VTqV_DLONxL1bKwbI1n5jw0VfWa0feMqfZDYly1sqac1q1su7p9Up0z2bGas1Y-ffA-q16kdKCUdYo3z6szwbTmTInz6veVu8WYkOxcmMLoLExkicFiSpiIDSH2zkNGkvflRPDJRrdkF3whRkxL8EWcA_Frju6E2z34scidJ0CuYkhh2bsJyIwT-DBCyhjJvE7ZLRDRZ7KEZZ1gU7-sng0wJXx1ui-qn18-_7j8Vt98_3p9-emmtlKLXHNJUXVa4NDrQTa2073UOwlKomwUNIOkqmN2QNWgthyFxkaxoQB9D0pwcVFdH337AAezRDdDvDMBnPkLhDgaiNnZCY3lMOwklaqnQiptgXXQadYLsAxFu3l9PHot627G3paJIkyPTB__eLc3Y7g1rVaKy6YYvDsZxPBrxZTN7JLFqWwLw5oML3V5qaS6Qn37H_UQ1liWvrGaTjJNm43Fjixblp8iDvfNMGq26JhjdEyJjtmiY9qiefNwinvFv6yIP_KlxIE</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Ng'oma, E</creator><creator>Williams-Simon, P A</creator><creator>Rahman, A</creator><creator>King, E G</creator><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1947-476X</orcidid><orcidid>https://orcid.org/0000-0002-6741-7922</orcidid><orcidid>https://orcid.org/0000-0002-9393-4720</orcidid></search><sort><creationdate>20200128</creationdate><title>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</title><author>Ng'oma, E ; Williams-Simon, P A ; Rahman, A ; King, E G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Biological activity</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Diet</topic><topic>Diet effects</topic><topic>Dietary restrictions</topic><topic>Differential gene expression</topic><topic>Drosophila melanogaster</topic><topic>Gene co-expression</topic><topic>Gene expression</topic><topic>Gene set enrichment</topic><topic>Gene set enrichment analysis</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomics</topic><topic>Hormones</topic><topic>Insects</topic><topic>Insulin</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Modules</topic><topic>Multiparent population</topic><topic>Natural populations</topic><topic>Nucleotide sequence</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Population</topic><topic>Populations</topic><topic>Principal components analysis</topic><topic>Resource allocation</topic><topic>Resource availability</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Transcription</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng'oma, E</creatorcontrib><creatorcontrib>Williams-Simon, P A</creatorcontrib><creatorcontrib>Rahman, A</creatorcontrib><creatorcontrib>King, E G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng'oma, E</au><au>Williams-Simon, P A</au><au>Rahman, A</au><au>King, E G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>84</spage><epage>84</epage><pages>84-84</pages><artnum>84</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, P &lt; 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR P &lt; 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR &lt; 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, P &lt; 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed. Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>31992183</pmid><doi>10.1186/s12864-020-6467-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1947-476X</orcidid><orcidid>https://orcid.org/0000-0002-6741-7922</orcidid><orcidid>https://orcid.org/0000-0002-9393-4720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2020-01, Vol.21 (1), p.84-84, Article 84
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2afb4048d03489ca17a791d3ac1e362
source Publicly Available Content (ProQuest); PubMed Central
subjects Aging
Biological activity
Cluster analysis
Clustering
Diet
Diet effects
Dietary restrictions
Differential gene expression
Drosophila melanogaster
Gene co-expression
Gene expression
Gene set enrichment
Gene set enrichment analysis
Genes
Genetic diversity
Genomics
Hormones
Insects
Insulin
Kinases
Metabolism
Modules
Multiparent population
Natural populations
Nucleotide sequence
Nutrients
Nutrition
Population
Populations
Principal components analysis
Resource allocation
Resource availability
Ribonucleic acid
RNA
Signal transduction
Transcription
Transcription factors
title Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20biological%20processes%20coordinate%20the%20transcriptional%20response%20to%20nutritional%20changes%20in%20a%20Drosophila%20melanogaster%20multiparent%20population&rft.jtitle=BMC%20genomics&rft.au=Ng'oma,%20E&rft.date=2020-01-28&rft.volume=21&rft.issue=1&rft.spage=84&rft.epage=84&rft.pages=84-84&rft.artnum=84&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-6467-6&rft_dat=%3Cproquest_doaj_%3E2348236287%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-240e8793efd9f45c79d49b4a84e458a5f40871cfe85e9c2e39e581fcfedda8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357419057&rft_id=info:pmid/31992183&rfr_iscdi=true