Loading…

DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning

Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target for diseases like cancer. In recent years, the detection of bas...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2021-06, Vol.22 (1), p.1-430, Article 430
Main Author: Boemo, Michael A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23
cites cdi_FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23
container_end_page 430
container_issue 1
container_start_page 1
container_title BMC genomics
container_volume 22
creator Boemo, Michael A
description Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target for diseases like cancer. In recent years, the detection of base analogues in Oxford Nanopore Technologies (ONT) sequencing reads has become a promising new method to supersede existing single-molecule methods such as DNA fibre analysis: ONT sequencing yields long reads with high throughput, and sequenced molecules can be mapped to the genome using standard sequence alignment software. This paper introduces DNAscent v2, software that uses a residual neural network to achieve fast, accurate detection of the thymidine analogue BrdU with single-nucleotide resolution. DNAscent v2 also comes equipped with an autoencoder that interprets the pattern of BrdU incorporation on each ONT-sequenced molecule into replication fork direction to call the location of replication origins termination sites. DNAscent v2 surpasses previous versions of DNAscent in BrdU calling accuracy, origin calling accuracy, speed, and versatility across different experimental protocols. Unlike NanoMod, DNAscent v2 positively identifies BrdU without the need for sequencing unmodified DNA. Unlike RepNano, DNAscent v2 calls BrdU with single-nucleotide resolution and detects more origins than RepNano from the same sequencing data. DNAscent v2 is open-source and available at https://github.com/MBoemo/DNAscent. This paper shows that DNAscent v2 is the new state-of-the-art in the high-throughput, single-molecule detection of replication fork dynamics. These improvements in DNAscent v2 mark an important step towards measuring DNA replication dynamics in large genomes with single-molecule resolution. Looking forward, the increase in accuracy in single-nucleotide resolution BrdU calls will also allow DNAscent v2 to branch out into other areas of genome stability research, particularly the detection of DNA repair.
doi_str_mv 10.1186/s12864-021-07736-6
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2bb4ea22f70426e89076eb748ed4b2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665425201</galeid><doaj_id>oai_doaj_org_article_c2bb4ea22f70426e89076eb748ed4b2a</doaj_id><sourcerecordid>A665425201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23</originalsourceid><addsrcrecordid>eNptkkuPFCEUhStG44yjf8BVJW50USNQvMqFSWd8dTLRxEdcEgouPbTV0APUqP9eunuitjEsIIfvHuBwm-YxRucYS_48YyI57RDBHRKi5x2_05xiKnBHMKd3_1qfNA9yXiOEhSTsfnPSU4yEHOhp8_XV-0U2EEp7Q160FgqY4sOqTbCdvNHFx9C6mL7l1oc26BC3MUGb4XqGYHag1UW33325qsWwbSfQKVT9YXPP6SnDo9v5rPny5vXni3fd5Ye3y4vFZWeYoKUbiBs106Mm1A0MpOOCCUfpKLCTCCHCkKW90SAos9r0EvrBSTtaiShjlvRnzfLga6Neq23yG51-qqi92gsxrZROxZsJlCHjSEET4gSihIMckOAwCirB0pHo6vXy4LWdxw3YXSpJT0emxzvBX6lVvFESDxhRXA2e3hqkWAPKRW18DXeadIA4Z0VYP0gpBRIVffIPuo5zCjWqStGe1U9F-A-10vUBPrhYzzU7U7XgnFHCyJ46_w9Vh4WNNzGA81U_Knh2VFCZAj_KSs85q-Wnj8csObAmxZwTuN95YKR2bagObajqjdW-DRXvfwHYe8w5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543502101</pqid></control><display><type>article</type><title>DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Boemo, Michael A</creator><creatorcontrib>Boemo, Michael A</creatorcontrib><description>Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target for diseases like cancer. In recent years, the detection of base analogues in Oxford Nanopore Technologies (ONT) sequencing reads has become a promising new method to supersede existing single-molecule methods such as DNA fibre analysis: ONT sequencing yields long reads with high throughput, and sequenced molecules can be mapped to the genome using standard sequence alignment software. This paper introduces DNAscent v2, software that uses a residual neural network to achieve fast, accurate detection of the thymidine analogue BrdU with single-nucleotide resolution. DNAscent v2 also comes equipped with an autoencoder that interprets the pattern of BrdU incorporation on each ONT-sequenced molecule into replication fork direction to call the location of replication origins termination sites. DNAscent v2 surpasses previous versions of DNAscent in BrdU calling accuracy, origin calling accuracy, speed, and versatility across different experimental protocols. Unlike NanoMod, DNAscent v2 positively identifies BrdU without the need for sequencing unmodified DNA. Unlike RepNano, DNAscent v2 calls BrdU with single-nucleotide resolution and detects more origins than RepNano from the same sequencing data. DNAscent v2 is open-source and available at https://github.com/MBoemo/DNAscent. This paper shows that DNAscent v2 is the new state-of-the-art in the high-throughput, single-molecule detection of replication fork dynamics. These improvements in DNAscent v2 mark an important step towards measuring DNA replication dynamics in large genomes with single-molecule resolution. Looking forward, the increase in accuracy in single-nucleotide resolution BrdU calls will also allow DNAscent v2 to branch out into other areas of genome stability research, particularly the detection of DNA repair.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-021-07736-6</identifier><identifier>PMID: 34107894</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Accuracy ; Artificial neural networks ; Computer programs ; Deep learning ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; DNA replication ; DNA sequencing ; DNAscent ; Genomes ; Genomics ; Identification and classification ; Machine learning ; Neural networks ; Nucleotide sequence ; Nucleotide sequencing ; Nucleotides ; Origins ; Oxford nanopore ; Performance evaluation ; Probability ; Replication ; Replication fork ; Replication forks ; Replication origins ; Residual neural networks ; Software ; Source code ; Technology application ; Therapeutic targets ; Thymidine</subject><ispartof>BMC genomics, 2021-06, Vol.22 (1), p.1-430, Article 430</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23</citedby><cites>FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23</cites><orcidid>0000-0002-0326-8200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2543502101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids></links><search><creatorcontrib>Boemo, Michael A</creatorcontrib><title>DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning</title><title>BMC genomics</title><description>Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target for diseases like cancer. In recent years, the detection of base analogues in Oxford Nanopore Technologies (ONT) sequencing reads has become a promising new method to supersede existing single-molecule methods such as DNA fibre analysis: ONT sequencing yields long reads with high throughput, and sequenced molecules can be mapped to the genome using standard sequence alignment software. This paper introduces DNAscent v2, software that uses a residual neural network to achieve fast, accurate detection of the thymidine analogue BrdU with single-nucleotide resolution. DNAscent v2 also comes equipped with an autoencoder that interprets the pattern of BrdU incorporation on each ONT-sequenced molecule into replication fork direction to call the location of replication origins termination sites. DNAscent v2 surpasses previous versions of DNAscent in BrdU calling accuracy, origin calling accuracy, speed, and versatility across different experimental protocols. Unlike NanoMod, DNAscent v2 positively identifies BrdU without the need for sequencing unmodified DNA. Unlike RepNano, DNAscent v2 calls BrdU with single-nucleotide resolution and detects more origins than RepNano from the same sequencing data. DNAscent v2 is open-source and available at https://github.com/MBoemo/DNAscent. This paper shows that DNAscent v2 is the new state-of-the-art in the high-throughput, single-molecule detection of replication fork dynamics. These improvements in DNAscent v2 mark an important step towards measuring DNA replication dynamics in large genomes with single-molecule resolution. Looking forward, the increase in accuracy in single-nucleotide resolution BrdU calls will also allow DNAscent v2 to branch out into other areas of genome stability research, particularly the detection of DNA repair.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computer programs</subject><subject>Deep learning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>DNA sequencing</subject><subject>DNAscent</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Identification and classification</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Nucleotides</subject><subject>Origins</subject><subject>Oxford nanopore</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Replication</subject><subject>Replication fork</subject><subject>Replication forks</subject><subject>Replication origins</subject><subject>Residual neural networks</subject><subject>Software</subject><subject>Source code</subject><subject>Technology application</subject><subject>Therapeutic targets</subject><subject>Thymidine</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuPFCEUhStG44yjf8BVJW50USNQvMqFSWd8dTLRxEdcEgouPbTV0APUqP9eunuitjEsIIfvHuBwm-YxRucYS_48YyI57RDBHRKi5x2_05xiKnBHMKd3_1qfNA9yXiOEhSTsfnPSU4yEHOhp8_XV-0U2EEp7Q160FgqY4sOqTbCdvNHFx9C6mL7l1oc26BC3MUGb4XqGYHag1UW33325qsWwbSfQKVT9YXPP6SnDo9v5rPny5vXni3fd5Ye3y4vFZWeYoKUbiBs106Mm1A0MpOOCCUfpKLCTCCHCkKW90SAos9r0EvrBSTtaiShjlvRnzfLga6Neq23yG51-qqi92gsxrZROxZsJlCHjSEET4gSihIMckOAwCirB0pHo6vXy4LWdxw3YXSpJT0emxzvBX6lVvFESDxhRXA2e3hqkWAPKRW18DXeadIA4Z0VYP0gpBRIVffIPuo5zCjWqStGe1U9F-A-10vUBPrhYzzU7U7XgnFHCyJ46_w9Vh4WNNzGA81U_Knh2VFCZAj_KSs85q-Wnj8csObAmxZwTuN95YKR2bagObajqjdW-DRXvfwHYe8w5</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Boemo, Michael A</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0326-8200</orcidid></search><sort><creationdate>20210609</creationdate><title>DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning</title><author>Boemo, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computer programs</topic><topic>Deep learning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>DNA sequencing</topic><topic>DNAscent</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Identification and classification</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Nucleotides</topic><topic>Origins</topic><topic>Oxford nanopore</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Replication</topic><topic>Replication fork</topic><topic>Replication forks</topic><topic>Replication origins</topic><topic>Residual neural networks</topic><topic>Software</topic><topic>Source code</topic><topic>Technology application</topic><topic>Therapeutic targets</topic><topic>Thymidine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boemo, Michael A</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ - Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boemo, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning</atitle><jtitle>BMC genomics</jtitle><date>2021-06-09</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>430</epage><pages>1-430</pages><artnum>430</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target for diseases like cancer. In recent years, the detection of base analogues in Oxford Nanopore Technologies (ONT) sequencing reads has become a promising new method to supersede existing single-molecule methods such as DNA fibre analysis: ONT sequencing yields long reads with high throughput, and sequenced molecules can be mapped to the genome using standard sequence alignment software. This paper introduces DNAscent v2, software that uses a residual neural network to achieve fast, accurate detection of the thymidine analogue BrdU with single-nucleotide resolution. DNAscent v2 also comes equipped with an autoencoder that interprets the pattern of BrdU incorporation on each ONT-sequenced molecule into replication fork direction to call the location of replication origins termination sites. DNAscent v2 surpasses previous versions of DNAscent in BrdU calling accuracy, origin calling accuracy, speed, and versatility across different experimental protocols. Unlike NanoMod, DNAscent v2 positively identifies BrdU without the need for sequencing unmodified DNA. Unlike RepNano, DNAscent v2 calls BrdU with single-nucleotide resolution and detects more origins than RepNano from the same sequencing data. DNAscent v2 is open-source and available at https://github.com/MBoemo/DNAscent. This paper shows that DNAscent v2 is the new state-of-the-art in the high-throughput, single-molecule detection of replication fork dynamics. These improvements in DNAscent v2 mark an important step towards measuring DNA replication dynamics in large genomes with single-molecule resolution. Looking forward, the increase in accuracy in single-nucleotide resolution BrdU calls will also allow DNAscent v2 to branch out into other areas of genome stability research, particularly the detection of DNA repair.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34107894</pmid><doi>10.1186/s12864-021-07736-6</doi><orcidid>https://orcid.org/0000-0002-0326-8200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2021-06, Vol.22 (1), p.1-430, Article 430
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2bb4ea22f70426e89076eb748ed4b2a
source Publicly Available Content (ProQuest); PubMed Central
subjects Accuracy
Artificial neural networks
Computer programs
Deep learning
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA repair
DNA replication
DNA sequencing
DNAscent
Genomes
Genomics
Identification and classification
Machine learning
Neural networks
Nucleotide sequence
Nucleotide sequencing
Nucleotides
Origins
Oxford nanopore
Performance evaluation
Probability
Replication
Replication fork
Replication forks
Replication origins
Residual neural networks
Software
Source code
Technology application
Therapeutic targets
Thymidine
title DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNAscent%20v2:%20detecting%20replication%20forks%20in%20nanopore%20sequencing%20data%20with%20deep%20learning&rft.jtitle=BMC%20genomics&rft.au=Boemo,%20Michael%20A&rft.date=2021-06-09&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=430&rft.pages=1-430&rft.artnum=430&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-021-07736-6&rft_dat=%3Cgale_doaj_%3EA665425201%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-92fba5aba24f95e8f6757f44b71f8000250d43cae745dac38e39f8dbd80455d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543502101&rft_id=info:pmid/34107894&rft_galeid=A665425201&rfr_iscdi=true