Loading…
Cogroupoid structures on the circle and the Hodge degeneration
We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudie...
Saved in:
Published in: | Forum of mathematics. Sigma 2024-01, Vol.12, Article e10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Forum of mathematics. Sigma |
container_volume | 12 |
creator | Moulinos, Tasos |
description | We exhibit the Hodge degeneration from nonabelian Hodge theory as a
$2$
-fold delooping of the filtered loop space
$E_2$
-groupoid in formal moduli problems. This is an iterated groupoid object which in degree
$1$
recovers the filtered circle
$S^1_{fil}$
of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an
$E_2$
-cogroupoid object in the
$\infty $
-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on
$S^1$
, as well as the Todd class of the Lie algebroid
$\mathbb {T}_{X}$
; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology. |
doi_str_mv | 10.1017/fms.2023.122 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fms_2023_122</cupid><doaj_id>oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2</doaj_id><sourcerecordid>2914375089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEhX0xg-IxJWE9caOkwsSqoBWqsQFzpbrR0jVxsVODvx73IeAA7541hrPjj5CbigUFKi4d9tYIGBZUMQzMkHgkHNo2PkffUmmMa4BgFIUXIgJeZj5Nvhx5zuTxSGMehiDjZnvs-HDZroLemMz1ZvDOPemtZmxre1tUEPn-2ty4dQm2unpviLvz09vs3m-fH1ZzB6XuS6rcshRC7piUGsDtQCsLRVVKqVoCUk2znDkyjFkDjWrK8exskJwClpwZTmWV2RxzDVereUudFsVvqRXnTw8-NBKFYYulZUajU6HW6caVtes0cKUFFnlFHW13mfdHrN2wX-ONg5y7cfQp_oSG8pKwaFukuvu6NLBxxis-9lKQe6BywRc7oHLBDzZi5NdbVehS5x-U__98A3rt4Bi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914375089</pqid></control><display><type>article</type><title>Cogroupoid structures on the circle and the Hodge degeneration</title><source>Cambridge Journals Online</source><creator>Moulinos, Tasos</creator><creatorcontrib>Moulinos, Tasos</creatorcontrib><description>We exhibit the Hodge degeneration from nonabelian Hodge theory as a
$2$
-fold delooping of the filtered loop space
$E_2$
-groupoid in formal moduli problems. This is an iterated groupoid object which in degree
$1$
recovers the filtered circle
$S^1_{fil}$
of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an
$E_2$
-cogroupoid object in the
$\infty $
-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on
$S^1$
, as well as the Todd class of the Lie algebroid
$\mathbb {T}_{X}$
; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2023.122</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14F40 ; 55P35 ; Algebra ; Degeneration ; Existence theorems ; Geometry ; Homology ; Homotopy theory ; Noncompliance</subject><ispartof>Forum of mathematics. Sigma, 2024-01, Vol.12, Article e10</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</cites><orcidid>0000-0002-7779-8984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2050509423001226/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids></links><search><creatorcontrib>Moulinos, Tasos</creatorcontrib><title>Cogroupoid structures on the circle and the Hodge degeneration</title><title>Forum of mathematics. Sigma</title><addtitle>Forum of Mathematics, Sigma</addtitle><description>We exhibit the Hodge degeneration from nonabelian Hodge theory as a
$2$
-fold delooping of the filtered loop space
$E_2$
-groupoid in formal moduli problems. This is an iterated groupoid object which in degree
$1$
recovers the filtered circle
$S^1_{fil}$
of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an
$E_2$
-cogroupoid object in the
$\infty $
-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on
$S^1$
, as well as the Todd class of the Lie algebroid
$\mathbb {T}_{X}$
; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</description><subject>14F40</subject><subject>55P35</subject><subject>Algebra</subject><subject>Degeneration</subject><subject>Existence theorems</subject><subject>Geometry</subject><subject>Homology</subject><subject>Homotopy theory</subject><subject>Noncompliance</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkEtPwzAQhC0EEhX0xg-IxJWE9caOkwsSqoBWqsQFzpbrR0jVxsVODvx73IeAA7541hrPjj5CbigUFKi4d9tYIGBZUMQzMkHgkHNo2PkffUmmMa4BgFIUXIgJeZj5Nvhx5zuTxSGMehiDjZnvs-HDZroLemMz1ZvDOPemtZmxre1tUEPn-2ty4dQm2unpviLvz09vs3m-fH1ZzB6XuS6rcshRC7piUGsDtQCsLRVVKqVoCUk2znDkyjFkDjWrK8exskJwClpwZTmWV2RxzDVereUudFsVvqRXnTw8-NBKFYYulZUajU6HW6caVtes0cKUFFnlFHW13mfdHrN2wX-ONg5y7cfQp_oSG8pKwaFukuvu6NLBxxis-9lKQe6BywRc7oHLBDzZi5NdbVehS5x-U__98A3rt4Bi</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Moulinos, Tasos</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7779-8984</orcidid></search><sort><creationdate>20240115</creationdate><title>Cogroupoid structures on the circle and the Hodge degeneration</title><author>Moulinos, Tasos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14F40</topic><topic>55P35</topic><topic>Algebra</topic><topic>Degeneration</topic><topic>Existence theorems</topic><topic>Geometry</topic><topic>Homology</topic><topic>Homotopy theory</topic><topic>Noncompliance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulinos, Tasos</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulinos, Tasos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cogroupoid structures on the circle and the Hodge degeneration</atitle><jtitle>Forum of mathematics. Sigma</jtitle><addtitle>Forum of Mathematics, Sigma</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>12</volume><artnum>e10</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>We exhibit the Hodge degeneration from nonabelian Hodge theory as a
$2$
-fold delooping of the filtered loop space
$E_2$
-groupoid in formal moduli problems. This is an iterated groupoid object which in degree
$1$
recovers the filtered circle
$S^1_{fil}$
of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an
$E_2$
-cogroupoid object in the
$\infty $
-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on
$S^1$
, as well as the Todd class of the Lie algebroid
$\mathbb {T}_{X}$
; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fms.2023.122</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-7779-8984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-5094 |
ispartof | Forum of mathematics. Sigma, 2024-01, Vol.12, Article e10 |
issn | 2050-5094 2050-5094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2 |
source | Cambridge Journals Online |
subjects | 14F40 55P35 Algebra Degeneration Existence theorems Geometry Homology Homotopy theory Noncompliance |
title | Cogroupoid structures on the circle and the Hodge degeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cogroupoid%20structures%20on%20the%20circle%20and%20the%20Hodge%20degeneration&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Moulinos,%20Tasos&rft.date=2024-01-15&rft.volume=12&rft.artnum=e10&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2023.122&rft_dat=%3Cproquest_doaj_%3E2914375089%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2914375089&rft_id=info:pmid/&rft_cupid=10_1017_fms_2023_122&rfr_iscdi=true |