Loading…

Cogroupoid structures on the circle and the Hodge degeneration

We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudie...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma 2024-01, Vol.12, Article e10
Main Author: Moulinos, Tasos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523
container_end_page
container_issue
container_start_page
container_title Forum of mathematics. Sigma
container_volume 12
creator Moulinos, Tasos
description We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$ -cogroupoid object in the $\infty $ -category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$ , as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$ ; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.
doi_str_mv 10.1017/fms.2023.122
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fms_2023_122</cupid><doaj_id>oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2</doaj_id><sourcerecordid>2914375089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEhX0xg-IxJWE9caOkwsSqoBWqsQFzpbrR0jVxsVODvx73IeAA7541hrPjj5CbigUFKi4d9tYIGBZUMQzMkHgkHNo2PkffUmmMa4BgFIUXIgJeZj5Nvhx5zuTxSGMehiDjZnvs-HDZroLemMz1ZvDOPemtZmxre1tUEPn-2ty4dQm2unpviLvz09vs3m-fH1ZzB6XuS6rcshRC7piUGsDtQCsLRVVKqVoCUk2znDkyjFkDjWrK8exskJwClpwZTmWV2RxzDVereUudFsVvqRXnTw8-NBKFYYulZUajU6HW6caVtes0cKUFFnlFHW13mfdHrN2wX-ONg5y7cfQp_oSG8pKwaFukuvu6NLBxxis-9lKQe6BywRc7oHLBDzZi5NdbVehS5x-U__98A3rt4Bi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914375089</pqid></control><display><type>article</type><title>Cogroupoid structures on the circle and the Hodge degeneration</title><source>Cambridge Journals Online</source><creator>Moulinos, Tasos</creator><creatorcontrib>Moulinos, Tasos</creatorcontrib><description>We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$ -cogroupoid object in the $\infty $ -category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$ , as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$ ; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2023.122</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14F40 ; 55P35 ; Algebra ; Degeneration ; Existence theorems ; Geometry ; Homology ; Homotopy theory ; Noncompliance</subject><ispartof>Forum of mathematics. Sigma, 2024-01, Vol.12, Article e10</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</cites><orcidid>0000-0002-7779-8984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2050509423001226/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids></links><search><creatorcontrib>Moulinos, Tasos</creatorcontrib><title>Cogroupoid structures on the circle and the Hodge degeneration</title><title>Forum of mathematics. Sigma</title><addtitle>Forum of Mathematics, Sigma</addtitle><description>We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$ -cogroupoid object in the $\infty $ -category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$ , as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$ ; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</description><subject>14F40</subject><subject>55P35</subject><subject>Algebra</subject><subject>Degeneration</subject><subject>Existence theorems</subject><subject>Geometry</subject><subject>Homology</subject><subject>Homotopy theory</subject><subject>Noncompliance</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkEtPwzAQhC0EEhX0xg-IxJWE9caOkwsSqoBWqsQFzpbrR0jVxsVODvx73IeAA7541hrPjj5CbigUFKi4d9tYIGBZUMQzMkHgkHNo2PkffUmmMa4BgFIUXIgJeZj5Nvhx5zuTxSGMehiDjZnvs-HDZroLemMz1ZvDOPemtZmxre1tUEPn-2ty4dQm2unpviLvz09vs3m-fH1ZzB6XuS6rcshRC7piUGsDtQCsLRVVKqVoCUk2znDkyjFkDjWrK8exskJwClpwZTmWV2RxzDVereUudFsVvqRXnTw8-NBKFYYulZUajU6HW6caVtes0cKUFFnlFHW13mfdHrN2wX-ONg5y7cfQp_oSG8pKwaFukuvu6NLBxxis-9lKQe6BywRc7oHLBDzZi5NdbVehS5x-U__98A3rt4Bi</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Moulinos, Tasos</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7779-8984</orcidid></search><sort><creationdate>20240115</creationdate><title>Cogroupoid structures on the circle and the Hodge degeneration</title><author>Moulinos, Tasos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14F40</topic><topic>55P35</topic><topic>Algebra</topic><topic>Degeneration</topic><topic>Existence theorems</topic><topic>Geometry</topic><topic>Homology</topic><topic>Homotopy theory</topic><topic>Noncompliance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulinos, Tasos</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulinos, Tasos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cogroupoid structures on the circle and the Hodge degeneration</atitle><jtitle>Forum of mathematics. Sigma</jtitle><addtitle>Forum of Mathematics, Sigma</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>12</volume><artnum>e10</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$ -fold delooping of the filtered loop space $E_2$ -groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$ -cogroupoid object in the $\infty $ -category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$ , as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$ ; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fms.2023.122</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-7779-8984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5094
ispartof Forum of mathematics. Sigma, 2024-01, Vol.12, Article e10
issn 2050-5094
2050-5094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2dcccc5efa948849c7d31246fa1f8c2
source Cambridge Journals Online
subjects 14F40
55P35
Algebra
Degeneration
Existence theorems
Geometry
Homology
Homotopy theory
Noncompliance
title Cogroupoid structures on the circle and the Hodge degeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cogroupoid%20structures%20on%20the%20circle%20and%20the%20Hodge%20degeneration&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Moulinos,%20Tasos&rft.date=2024-01-15&rft.volume=12&rft.artnum=e10&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2023.122&rft_dat=%3Cproquest_doaj_%3E2914375089%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-2c71b408cd087028e176205a130e179fd525af424f2c486f526e77510c75ae523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2914375089&rft_id=info:pmid/&rft_cupid=10_1017_fms_2023_122&rfr_iscdi=true